

АГРАРНАЯ РЕФОРМА И ФОРМЫ ХОЗЯЙСТВОВАНИЯ

Научная статья УДК 338.436 doi: 10.55186/25876740 2025 68 5 567

АНАЛИЗ ВОСТРЕБОВАННОСТИ ЦИФРОВЫХ ТЕХНОЛОГИЙ В АГРОБИЗНЕСЕ С ИСПОЛЬЗОВАНИЕМ АНАЛИТИЧЕСКОЙ ПЛАТФОРМЫ ЯНДЕКС ВОРДСТАТ

Д.М. Назаров¹, Ю.В. Гудошникова¹, Н.Г. Протас²

¹Уральский государственный экономический университет, Екатеринбург, Россия ²Новосибирский государственный университет экономики и управления, Новосибирск, Россия

Аннотация. В условиях стремительной цифровизации агропромышленного комплекса России возрастают требования к эффективности управления производственными процессами, оптимизации ресурсопотребления и повышению конкурентоспособности сельскохозяйственных организаций. Одной из ключевых предпосылок успешной трансформации отрасли является внедрение передовых цифровых технологий, позволяющих автоматизировать операции, собирать и анализировать большой объем данных, а также оперативно реагировать на изменения рыночной конъюнктуры. Настоящая статья посвящена исследованию востребованности ряда современных цифровых технологий в агробизнесе, включая большие данные, lot, ГИС, роботизацию и блокчейн. Для достижения поставленных целей использована аналитическая платформа Яндекс.Вордстат, позволяющая получить статистическую оценку интереса к соответствующим поисковым запросам в интернете. Подобный методический подход способствует выявлению доминирующих трендов и приоритетных направлений развития цифровизации сельского хозяйства. В ходе исследования проанализированы частотность запросов и их динамика в период с февраля 2023 года по январь 2025 года. Полученные результаты дают возможность определить текущее состояние цифровой трансформации агробизнеса и оценить уровень внимания к конкретным технологическим решениям. Кроме того, работа демонстрирует практическую значимость системной аналитики, позволяющей аграрным предприятиям и профильным экспертам своевременно реагировать на изменения информационных потоков и формировать конкурентные стратегии развития. Статья может представлять интерес для руководителей агропромышленных предприятий, специалистов IT-сферы, научных работников и студентов, занимающихся проблемами цифровизации отрасли. Представленная методика исследования служит примером комплексного подхода к оценке спроса на инновационные решения и может быть адаптирована к анализу других направлений в аграрном секторе.

Ключевые слова: цифровые технологии, агробизнес, большие данные, IoT, ГИС, роботизация, Яндекс Вордстат

Original article

ANALYSIS OF THE DEMAND FOR DIGITAL TECHNOLOGIES IN AGRIBUSINESS USING THE YANDEX WORDSTAT ANALYTICAL PLATFORM

D.M. Nazarov¹, Yu.V. Gudoshnikova¹, N.G. Protas²

¹Ural State University of Economics, Ekaterinburg, Russia ²Novosibirsk State University of Economics and Management, Novosibirsk, Russia

Abstract. In the context of rapid digitalization of the agro-industrial complex of Russia, the requirements for the efficiency of production process management, optimization of resource consumption and increasing the competitiveness of agricultural organizations are increasing. One of the key prerequisites for successful transformations is the introduction of advanced digital technologies that allow automating operations, collecting and analyzing large volumes of data, and quickly responding to changes in market conditions. This article is devoted to the study of the demand for a number of modern digital technologies in agribusiness, including big data, the Internet of Things, GIS, robotics and economy. To achieve these goals, the Yandex.Wordstat analytical platform was used, which allows obtaining a statistical assessment of the corresponding search queries on the Internet. Such a methodological approach helps to identify large-scale trends and priority areas for the development of digitalization of agriculture. The study analyzed the frequency of queries and their dynamics in the period from February 2023 to January 2025. The results obtained make it possible to determine the feasibility of the current state of digital transformation of agribusiness and assess the level of attention to the applied technological solutions. In addition, work in the practical innovation of system analytics, heads of agricultural enterprises and specialized experts allows timely response to changes in information flows and the formation of competitive development strategies. The article may be of interest to heads of agro-industrial enterprises, IT specialists, researchers and students dealing with the problems of digitalization of the industry. The research methodology provides a comprehensive approach to the consideration of innovative solutions and can be adapted to the analysis of others observed in the agricultural region presented today.

Keywords: digital technologies, agribusiness, big data, IoT, GIS, robotics, Yandex Wordstat

Постановка проблемы. Современный этап развития агропромышленного комплекса (АПК) Российской Федерации характеризуется активным внедрением цифровых технологий, способствующих повышению эффективности сельскохозяйственных операций, сокращению затрат и минимизации риска принятия неверных управленческих решений. Перед аграрным сектором сегодня стоят масштабные задачи, связанные с устойчивым производством продовольствия, сохранением природных ресурсов

и внедрением инноваций, которые позволят обеспечить конкурентоспособность отечественных компаний на глобальном рынке. Цифровая трансформация АПК, будучи частью общего технологического прорыва, открывает новые возможности по оптимизации ключевых бизнеспроцессов и увеличению производительности на всех этапах — от первичного производства до сбыта готовой продукции. Одной из наиболее значимых черт цифровизации агробизнеса является интеграция интеллектуальных систем

и аналитических инструментов. Так, к примеру, распространение Интернета вещей (IoT) дает возможность в реальном времени собирать данные о состоянии почвы, микроклимата, росте растений и здоровье животных. Эти данные в совокупности с технологиями больших данных (Big Data) и искусственного интеллекта позволяют точнее прогнозировать урожайность, оптимизировать использование удобрений, воды и кормов, а также выстраивать более гибкие логистические цепочки. Параллельно развивается

направление роботизации и автоматизации, где специальные машины и дроны выполняют функции посева, опрыскивания, мониторинга полей и сбора урожая. Подобные решения не только уменьшают зависимость от человеческого фактора, но и повышают точность технологических операций.

Аналогичные преобразования затрагивают и управленческую сферу. Благодаря развитию блокчейна прозрачность и прослеживаемость цепочек поставок становится выше, а риск мошенничества — ниже. Интеллектуальные системы прогнозирования и платформы анализа данных помогают агропредприятиям принимать взвешенные решения на основании фактических показателей и рыночных тенденций. Не менее важную роль играет использование геоинформационных систем (ГИС), которые позволяют пространственно анализировать сельхозугодья, отслеживать изменения в ландшафте, контролировать продуктивность и выявлять потенциальные риски (засухи, эрозии почв и т.д.). Доступность качественных данных о состоянии земельных ресурсов становится критически важной при долгосрочном планировании сельскохозяйственного производства и освоении новых территорий. Однако вопросы. связанные с востребованностью и популярностью перечисленных технологий среди участников рынка, требуют дополнительного анализа. Не каждое инновационное решение одинаково хорошо приживается в реальном секторе, и тем более не каждое подходит для применения в конкретных условиях хозяйствования. В этой связи важно выявить приоритеты аграрных компаний и специалистов отрасли, понять, какие технологии вызывают наибольший интерес и, следовательно, являются наиболее перспективными для внедрения. Своевременная аналитика в данном направлении способствует правильному распределению ресурсов и развитию научнопрактических исследований в области цифровизации агросектора.

Одним из инструментов, позволяющих оценить уровень спроса и интереса к технологиям, является сервис Яндекс Вордстат. Он предоставляет статистику по поисковым запросам пользователей, давая возможность определить, насколько активно обсуждается в информационном поле та или иная тема, технология либо конкретная инновация. Данные Яндекс Вордстат, в сочетании с отраслевым анализом, помогают формировать представление о реальном интересе к цифровым продуктам и услугах в агробизнесе. Кроме того, динамика поисковых запросов может отражать сезонные колебания спроса или всплески популярности, связанные с появлением новостей, государственных инициатив или крупных событий в агропромышленном секторе.

Цель данной статьи — комплексно проанализировать востребованность современных цифровых технологий в отечественном агробизнесе на основе статистики поисковых запросов Яндекс Вордстат и выявить наиболее актуальные направления цифровой трансформации АПК. Для достижения поставленной цели необходимо решить следующие задачи:

- Определить основной набор инновационных технологий, актуальных для российского сельского хозяйства,
- 2. Изучить динамику поисковых запросов, связанных с этими технологиями, в период с февраля 2023 года по январь 2025 года,

- 3. Выявить особенности и тенденции изменения интереса к каждой технологии,
- Сделать выводы о практической значимости полученных результатов для участников аграрного рынка и исследователей.

Полученные итоги могут стать основой для дальнейших разработок в сфере цифрового мониторинга, стратегического планирования и совершенствования методов управления в АПК.

Анализ научных публикаций по теме цифровой трансформации агробизнеса позволяет выявить широкий спектр направлений, от роботизации и автоматизации процессов до формирования цифровых платформ. Например, согласно исследованиям Mochalova Ya.V. [2], при внедрении цифровых технологий в сельскохозяйственный сектор происходит значительное увеличение экономической эффективности производства. В тоже время, Belyaeva A.S. [6] указывает на существующие проблемы в области цифровой трансформации, связанные с недостаточным уровнем подготовки кадров и отсутствием единых стандартов интеграции инновационных решений. Часть авторов делает акцент на важности сквозных технологий и механизмов их адаптации к специфике российской сельскохозяйственной отрасли. К примеру, Ereshko F.I. [7] рассматривает роль цифровых стандартов, позволяющих согласовать требования к программному обеспечению и оборудованию между различными участниками рынка. Это перекликается с точкой зрения Plotnikova E.V. [13], предлагающей выделить ключевые технологии, такие как IoT, Big Data, ГИС и блокчейн, и сформировать комплексную программу их внедрения с учётом региональных особенностей и ресурсного потенциала. Подобная необходимость формирования системной методологии внедрения цифровых решений отмечается и у Arinichev I.V. [5], где указывается на роль мониторинга производства зерна в условиях технологических инноваций.

Отдельный блок исследований посвящён оценке мировых трендов и сравнению их с российской практикой. Так, Ivshin S.V. [10] подчеркивает важность компаративного анализа успешных зарубежных кейсов и отечественных реалий, а также необходимости адаптации методов цифровизации к законодательным и инфраструктурным условиям Российской Федерации. По схожей проблематике высказывается и Subaeva A.K. [4], обращающая внимание на тенденции развития сельского хозяйства в условиях цифровизации. Между тем, Chelysheva D.N. [14] акцентирует внимание на проблемах, связанных с финансированием и возможностях поиска путей решения для повышения инвестиционной привлекательности агробизнеса. Интеграция больших данных в практику аграрного производства занимает особое место. Как отмечает Zatsarinny A.A. [9], приложения искусственного интеллекта могут быть объединены в единую цифровую платформу АПК, что позволит оптимизировать процессы принятия решений и прогнозирования. Данная идея согласуется с точкой зрения Nazarov D.M. [11], который, исследуя опыт цифровизации сельского хозяйства на примере зарубежных государств, указывает на важность комплексного подхода к сбору и анализу информации. Между тем, Shevkunenko M.Yu. [16] связывает успех цифровой трансформации с формированием шестого технологического уклада, характеризующегося повсеместным использованием высокопроизводительных вычислительных платформ.

Немаловажную роль при внедрении инноваций в агропроизводство играет разработка гибких информационных систем. По мнению Nekhrey M. [3], цифровые технологии выступают фундаментальной составляющей будущего сельского хозяйства, обеспечивая своевременное выявление проблем и эффективное распределение ресурсов. На смежные вопросы обращает внимание и M.A. Zhukova [8], предлагающая концептуальный подход к формированию единой цифровой платформы агропродовольственного комплекса. С точки зрения Chernysheva K.V. [15], подобные системы аналитики данных являются драйвером цифровой трансформации АПК, поскольку дают возможность улучшить управление производственными циклами и сократить непроизводительные потери. Однако реализация подобных подходов требует комплексной организационной и научно-технической подготовки. По мнению Otmakhova Yu.S. [12], применение методов обработки больших данных для анализа цифровых технологий в агропродовольственной сфере требует совершенствования инструментов мониторинга, а также развития кадрового потенциала. Параллельно с этим, Kalimullin M.N. [4] (из соавторов упомянутой ранее работы) указывает на необходимость междисциплинарной кооперации. В контексте роботизации и автоматизации выделяется Mochalova Ya.V. [2], а также Nazaeva M.I. [1], где приводится анализ применения технологий обработки данных для формирования оптимизационных стратегий в сельском хозяйстве. Добавим, что Субаева А.К. [4] подчёркивает актуальность развития систем поддержки принятия решений, основанных на анализе множества параметров: от погодных условий до рыночных котировок.

По итогам рассмотренных источников становится ясно, что цифровая трансформация АПК объединяет в себе множество направлений: робототехнику, автоматизацию, использование аналитических платформ больших данных и искусственного интеллекта, внедрение ІоТ и блокчейна. При этом Ivshin S.V. [10] справедливо указывает на существенную роль государственной поддержки и частных инвестиций в продвижении инноваций.

Методология и методы исследования. Для определения востребованности цифровых технологий в современном агробизнесе была сформирована методика исследования, основанная на анализе статистики поисковых запросов в сервисе Яндекс.Вордстат и дальнейшей систематизации полученных данных.

На первом этапе был определён набор наиболее актуальных цифровых решений для агропромышленного комплекса, включающий (но не ограничивающийся) большие данные, loT, ГИС, роботизацию, блокчейн, мобильные приложения, а также смежные технологии (датчики, устройства loT, платформы для управления сельскохозяйственными процессами и т. д.). Данный перечень сформирован исходя из анализа научных публикаций и практического опыта отечественных хозяйств.

Для каждой технологии были разработаны специфические ключевые слова и фразы (например, «большие данные в сельском хозяйстве», «ГИС в сельском хозяйстве», «ГИС в сельском хозяйстве», «роботизация в сельском хозяйстве» и т.д.). Также учтены синонимы и уточняющие запросы, отражающие смежные аспекты (например, «датчики и ІоТ в сельском хозяйстве»).

В определённый период (02.2023-01.2025) осуществлялся пошаговый сбор статистических показателей по каждому запросу, включая общее число запросов и динамику по месяцам. Сервис Яндекс Вордстат предоставляет агрегированную информацию о том, сколько раз пользователи вводили соответствующие фразы в поисковой строке Яндекса.

Собранные данные были сгруппированы по месяцам и по конкретным технологиям, после чего проведена проверка на дублирование и анализ на предмет пропущенных значений. Результаты систематизировались в сводные таблицы для наглядности и удобства дальнейшего сопоставления.

Для каждого ключевого направления вычислялись показатели суммарной востребованности за исследуемый период и показатели временной динамики, чтобы выявить возможные сезонные всплески интереса. На основании данных определялась популярность той или иной технологии в контексте тенденций цифровизации.

На заключительном этапе был проведён комплексный анализ полученных результатов, позволивший оценить востребованность цифровых технологий в разрезе времени и сделать выводы о возможных перспективах их дальнейшего развития.

Использование Яндекс Вордстат в данном исследовании обусловлено высокой популярностью поисковой системы Яндекс среди русскоязычных пользователей интернета, что позволяет получить репрезентативную информацию об уровне интереса и степени обсуждаемости различных тем, включая инновационные решения для АПК.

Результаты. Цифровая трансформация агропромышленного комплекса в России охватывает широкий спектр технологических решений, каждое из которых направлено на решение определённых задач повышения эффективности производства, управления и маркетинга. Ниже представлена обобщающая таблица 1, которая иллюстрирует ключевые цифровые технологии, применяемые в отечественном АПК, и их функциональное назначение.

Из представленной таблицы можно сделать вывод, что цифровизация АПК базируется на тесной интеграции технических (роботы, дроны, датчики) и информационных (Big Data, IoT, ГИС, AI) решений. Каждая технология вносит вклад в повышение точности земледелия, снижение затрат и улучшение качества производимой продукции. Дальнейшее развитие данных направлений будет зависеть от доступности инвестиций, уровня подготовки специалистов и наличия соответствующей инфраструктуры.

Чтобы определить, какие из вышеназванных решений действительно востребованы в российском агробизнесе, а какие пока остаются на периферии внимания, был использован сервис Яндекс Вордстат. Данный инструмент позволяет отслеживать динамику поисковых запросов по заданным ключевым фразам, отражая интерес интернет-аудитории к конкретным темам. Для исследования были выбраны наиболее характерные для каждой технологии формулировки (например, «большие данные в сельском хозяйстве», «роботизация в сельском хозяйстве», «ГИС в сельском хозяйстве», «IoT в сельском хозяйстве» и т. д.), а также уточняющие запросы («датчики и IoT в сельском хозяйстве», «дроны в сельском хозяйстве опрыскивание» и пр.). Сервис Яндекс Вордстат представляет собой

Таблица 1. Анализ ключевых цифровых технологий, применяемые в отечественном АПК, и их функциональное назначение

Table 1. Analysis of key digital technologies used in the domestic agro-industrial complex and their functional purpose

Технология	Основное назначение
Большие данные (Big Data)	Сбор, хранение и аналитическая обработка крупных массивов разнородной информации (погодные данные, рынок, состояние почвы).
IoT (Интернет вещей)	Подключение сенсоров, устройств и сельхозтехники к единой сети для удалённого мониторинга и управления.
ГИС	Геоинформационные системы для пространственного анализа, картографирования полей, оптимизации использования земель.
Роботизация	Автоматизация процессов (посев, опрыскивание, уборка) с помощью дронов, роботизированных механизмов и умных машин.
Блокчейн	Обеспечение прозрачности и прослеживаемости цепочек поставок, защита от мошенничества, доверие между участниками.
Мобильные приложения	Удобные инструменты для агрономов и руководителей хозяйств, позволяющие вести учёт, контроль и планирование в режиме онлайн.
Датчики и устройства IoT	Специализированные сенсоры температуры, влажности, кислотности почвы, состояния культур и животных.
Автоматизация (ПО и роботы)	Программные системы, интегрированные с оборудованием, упрощающие и ускоряющие операции производства и обработки данных.
Аналитические платформы	Комплексные решения, обобщающие данные из разных источников, формирующие прогнозы и рекомендации для принятия решений.
Искусственный интеллект	Модели машинного обучения для предсказания урожайности, выявления заболеваний культур, оптимизации логистики и т. д.

онлайн-платформу статистики поисковых запросов в поисковой системе «Яндекс». Он отображает не только общее количество запросов за определённый период, но и позволяет проследить их помесячную динамику, что особенно важно для определения сезонных колебаний или влияния внешних факторов (выход законодательных документов, обсуждение новых госпроектов, экономические кризисы и т. д.).

Ниже в таблице 2 показана частотность поисковых запросов (за исследуемый период в обобщённом виде), связанных с цифровыми технологиями в сельском хозяйстве.

Из таблицы 2 следует, что максимальное число запросов относится к «Большим данным в сельском хозяйстве» (937) и «Роли больших данных» (625), что демонстрирует высокий уровень интереса к анализу крупных массивов информации. Также достаточно высокий спрос отмечен для «дронов в сельском хозяйстве» (500), указывая на то, что темы беспилотных технологий и роботизации активно обсуждаются в российском агропроме. ГИС и ІоТ также входят в число перспективных технологий, так как суммарно (с учётом смежных запросов) набирают сотни поисковых обращений. Напротив, «Искусственный интеллект в агробизнесе» набрал пока лишь 5 запросов, что может свидетельствовать о недостаточной информированности данной темой или более узком круге специалистов, изучающих АІ в контексте сельского хозяйства. Для более детальной оценки динамики интереса к цифровым решениям в сельском хозяйстве был проведён помесячный анализ в период с февраля 2023 года по январь 2025 года. Данные сведены в таблицу 3, где представлены результаты по семи ключевым запросам: «Большие данные в сельском хозяйстве», «Роль больших данных в сельском хозяйстве», «Дроны в сельском хозяйстве», «Роботизация в сельском хозяйстве», «ГИС в сельском хозяйстве», «IoT в сельском хозяйстве» и «ГИС технологии в сельском хозяйстве».

Таблица 2. Частотность поисковых запросов о цифровых технологиях в АПК Table 2. Frequency of search queries about digital technologies in the agro-industrial complex

Число

Формулировка	запро-
Большие данные в сельском хозяйстве	937
Роль больших данных в сельском хозяйстве	625
Дроны в сельском хозяйстве	500
Роботизация в сельском хозяйстве	196
ГИС в сельском хозяйстве	173
ІоТ в сельском хозяйстве	137
ГИС технологии в сельском хозяйстве	74
Датчики и IoT в сельском хозяйстве	55
IoT устройства в сельском хозяйстве	54
Блокчейн в сельском хозяйстве	43
Использование ГИС в сельском хозяйстве	33
Дроны в сельском хозяйстве в России	30
Применение ГИС в сельском хозяйстве	28
Автоматизация и роботизация в сельском хозяйстве	23
Применение IoT в сельском хозяйстве	20
Технология блокчейн в сельском хозяйстве	20
ГИС в сельском хозяйстве примеры	20
Дроны для мониторинга полей	19
Интернет вещей IoT в сельском хозяйстве	18
Мобильные приложения для сельского хозяйства	18
Примеры использования ГИС в сельском хозяйстве	15
Дроны в сельском хозяйстве опрыскивание	14
Преимущества использования ГИС в сельском хозяйстве	13
Беспилотные летательные аппараты дроны в сельском хозяйстве	12
Обзор мобильных приложений для сельского хозяйства	9
Как используются дроны в сельском хозяйстве	8
ГИС в географии сельского хозяйства	8
Дроны в сельском хозяйстве презентация	6
Искусственный интеллект в агробизнесе	5
ГИС в сфере сельского хозяйства	5
ГИС технологии в сельском хозяйстве картинка	5

Из данных видно, что максимальные всплески интереса к «Большим данным в сельском хозяйстве» приходятся на май 2024 года (1139 запросов) и декабрь 2024 года (1250 запросов). Вероятно, это может быть связано с проведением отраслевых конференций или выхода профильных публикаций. Параллельно в декабре 2024 года отмечено резкое повышение показателей по запросу «Роль больших данных в сельском хозяйстве» (805). Данная синхронизация может свидетельствовать об усилении интереса к вопросам сбора и анализа данных в этот период. Что касается «Дронов в сельском хозяйстве», то наивысшие показатели достигаются в конце 2023 года (330) и ближе к концу 2024 года (473-498). Аналогично «Роботизация в сельском хозяйстве» демонстрирует всплеск в апреле 2024 года (310) и относительно высокие показатели осенью (125-188) 2024 года. Данные колебания могут отражать активизацию планирования посевных и уборочных кампаний, а также поиск новых решений перед началом производственных циклов.

Интерес к ГИС в сельском хозяйстве особенно возрос в сентябре (313) и октябре (331) 2024 года, что, возможно, указывает на период принятия управленческих решений, когда землепользователи анализируют геопространственные данные перед осенне-зимним сезоном. loT, в свою очередь, достигает пиков весной (172 в марте 2024 года) и в конце 2024 года (147 в ноябре, 226 в декабре). Этот факт свидетельствует о том, что агробизнес всё больше признаёт ценность сенсорных решений и систем удалённого мониторинга. Сопоставляя таблицы 2 и 3, можно заметить, что обобщённые итоги подтверждаются динамикой: наибольшая совокупная популярность у технологий

больших данных и дронов, а также явное сезонное распределение интереса к ним. В связи с чем можно сделать ряд выводов:

- 1. Ростинтереса к большим данным. Пользователи не только ищут информацию о «Больших данных в сельском хозяйстве», но и уточняют их роль, что говорит о высоком уровне осознанности потенциальной выгоды.
- 2. Актуальность дронов и роботизации. Увеличение запросов весной и осенью указывает на привязку к сельскохозяйственным циклам. Перед посевными и уборочными работами специалисты ищут данные о новых технологических решениях.
- 3. Сезонность интереса к ГИС. Геоинформационные системы становятся особенно востребованными в периоды агротехнологических переходов, когда производится оценка состояния полей, анализ ландшафтных факторов и планирование посевов.
- 4. *IoT-решения приобретают популярность*. Запросы на IoT растут, что подтверждает тенденцию к всё более интенсивному внедрению сенсорных сетей и интеллектуальных систем контроля.

Таким образом, статистика поисковых запросов демонстрирует, что цифровые технологии занимают всё более заметное место в повестке агробизнеса. При этом наиболее активно обсуждаются те решения, которые позволяют оперативно влиять на производственные процессы (дроны, роботизация, IoT), а также те, которые связаны с анализом и прогнозированием (большие данные, ГИС). Темы блокчейна и искусственного интеллекта пока что получают относительно меньший объём внимания, что может быть обусловлено ограниченностью готовых решений и меньшей распространённостью подобных

проектов в российском АПК. Однако можно предположить, что по мере появления примеров успешного внедрения интерес к этим технологиям будет возрастать. Дополнительно следует учитывать, что поисковые тренды отражают скорее информированность и вовлечённость интернет-аудитории, нежели реальное внедрение. Но поскольку аграрные компании и фермеры всё чаще прибегают к онлайн-ресурсам при принятии решений (поиск оборудования, сравнение сервисов, чтение инструкций и рекомендаций), статистика Яндекс Вордстат может рассматриваться как достаточно надёжный показатель текущих настроений рынка. Рассматривая результаты более детально, можно выделить пиковые месяцы интереса к каждой технологии и сопоставить их с событиями аграрного календаря. Так, весна традиционно является временем активной подготовки к посевной, когда повышается спрос на информацию о сельхозтехнике и инновационных решениях. Осень — период уборки урожая и анализа итогов сезона, поэтому спрос на технологические новшества может вновь расти. Зимой, в свою очередь, возможно некоторое затишье, за исключением тех случаев, когда в публичном поле появляется новый проект или проходит важная профильная конференция, стимулирующая информационный всплеск.

В совокупности результаты исследования позволяют сделать вывод, что наибольший интерес в агробизнесе вызывают инструменты, связанные с обработкой больших массивов данных и прямым воздействием на производственный процесс (дроны, роботы, сенсоры). Данные технологии обладают существенным потенциалом по снижению затрат, повышению урожайности и улучшению контроля за всеми этапами выращивания и переработки продукции. При этом не стоит умалять роль других направлений, таких как блокчейн или AI, которые, хоть и имеют пока скромные поисковые показатели, могут в перспективе занять лидирующие позиции в силу своей универсальности и масштабируемости.

Оценивая общую картину, можно утверждать, что цифровая трансформация АПК в России находится в активной фазе: аграрии и профильные специалисты осознают ценность инноваций и всё чаще обращаются к ним на практике. Опираясь на приведённые статистические данные, экспертам в области агротехнологий и разработчикам цифровых решений имеет смысл уделять приоритетное внимание именно тем аспектам, которые наиболее востребованы рынком. В то же время важно продолжать популяризацию и развитие более сложных инструментов анализа и интеллектуальной обработки данных, которые могут дать долгосрочные конкурентные преимущества отечественному сельскому хозяйству на международной арене.

Подобные исследования, основанные на статистике поисковых запросов, не только помогают выявлять актуальные тренды, но и могут служить источником обратной связи для разработчиков технологий и государственных органов, отвечающих за поддержку агропромышленного комплекса. Мониторинг информационного поля позволяет принимать обоснованные решения о приоритетах финансирования, образовательных программах и научных исследованиях. Вследствие этого, дальнейшее совершенствование методологии анализа поисковой активности и расширение списка ключевых слов (включая региональные особенности, разные языки запросов и т. д.) будут способствовать

Таблица 3. Динамика выделенных запросов (февраль 2023 — январь 2025) Table 3. Dynamics of selected queries (February 2023 — January 2025)

Период / Запрос	Большие данные в сельском хозяйстве	Роль больших данных в сельском хозяйстве	Дроны в сельском хозяйстве	Роботи- зация в сельском хозяйстве	ГИС в сель- ском хо- зяйстве	IoT в сель- ском хо- зяйстве	ГИС тех- нологии в сельском хозяйстве
Февраль 2023	268	0	223	22	116	59	25
Март 2023	377	0	353	66	246	85	53
Апрель 2023	512	0	308	99	234	97	50
Май 2023	592	0	247	125	152	103	44
Июнь 2023	191	0	200	38	116	82	25
Июль 2023	36	0	119	12	128	37	14
Август 2023	37	0	142	20	28	17	6
Сентябрь 2023	177	0	304	40	102	52	19
Октябрь 2023	296	0	301	193	117	107	18
Ноябрь 2023	412	0	330	92	108	121	23
Декабрь 2023	649	0	223	96	210	171	58
Январь 2024	492	0	236	59	128	57	36
Февраль 2024	537	0	329	109	116	104	37
Март 2024	752	0	369	116	141	172	37
Апрель 2024	881	0	439	310	254	108	72
Май 2024	1139	0	434	234	217	113	58
Июнь 2024	272	0	236	48	112	62	34
Июль 2024	95	0	138	26	41	36	12
Август 2024	30	0	124	28	34	11	6
Сентябрь 2024	288	0	283	125	313	61	25
Октябрь 2024	571	0	460	188	331	130	29
Ноябрь 2024	689	0	473	174	159	147	35
Декабрь 2024	1250	805	498	185	279	226	57
Январь 2025	602	362	309	164	218	105	53

более глубокому пониманию процессов цифровизации и эффективному продвижению инноваций в АПК.

Список источников

- 1. Beksultanova A.I., Sadueva M.A., Nazaeva M.I. Application of digital technologies in the agro-industrial complex of Russia // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 723, No. 3. P. 032106. DOI: 10.1088/1755-1315/723/3/032106. EDN STXIHU.
- 2. Mochalova Ya.V., Ermakova A.N., Levushkina S.V. [et al.]. Application of digital technologies to increase the economic efficiency of agribusiness in Russia // Procedia Environmental Science, Engineering and Management. 2022. Vol. 9, No. 2. P. 601-606. EDN MIRREH.
- 3. Nehrey M., Zomchak L. Digital Technology: Emerging Issue for Agriculture // Lecture Notes on Data Engineering and Communications Technologies. 2022. Vol. 135. P. 146-156. DOI: 10.1007/978-3-031-04809-8_13. EDN CPUEXT.
- 4. Субаева А.К., Калимуллин М.Н., Низамутдинов М.М. [и др.]. Анализ и тенденции развития сельского хозяйства в условиях цифровизации // Вестник Казанского государственного аграрного университета. 2022. Т. 17, № 1(65). С. 135-141. DOI: 10.12737/2073-0462-2022-135-141. EDN AEOBKR.
- 5. Ариничев И.В., Сидоров В.А., Ариничева И.В. Цифровые решения в агробизнесе: формирование методологии мониторинга зернового производства в условиях технологических инноваций // Вестник Казанского государственного аграрного университета. 2024. Т. 19, № 1(73). С. 86-93. DOI: 10.12737/2073-0462-2024-86-93. EDN NASORB.
- 6. Беляева А.С., Никитина А.А. О проблемах и перспективах цифровой трансформации отечественного АПК // Достижения науки и техники АПК. 2023. Т. 37, № 1. С. 34-40. DOI: 10.53859/02352451_2023_37_1_34. EDN EAGGHZ.
- 7. Ерешко Ф.И., Меденников В.И., Кульба В.В. Сквозные технологии в АПК на основе цифровых стандартов // Информационное общество. 2020. № 3. С. 25-33. EDN HHYYEY.
- 8. Жукова М.А., Улезько А.В. Концептуальный подход к формированию цифровой платформы агропродовольственного комплекса // Вестник Воронежского государственного аграрного университета. 2020. Т. 13, № 4(67). С. 238-250. DOI: 10.17238/issn2071-2243.2020.4.238. EDN LPZZGK.
- 9. Зацаринный А.А., Меденников В.И., Райков А.Н. Интеграция приложений искусственного интеллекта в единую цифровую платформу АПК // Информационное общество. 2023. № 1. С. 127-138. DOI: 10.52605/16059921_2023_01_127. EDN NMKKLZ.
- 10. Ившин С.В., Анисимов А.Ю. Компаративный анализ российской и зарубежной практики цифровизации предприятий АПК // Труды Кубанского государственного аграрного университета. 2024. № 112. С. 40-47. DOI: 10.21515/1999-1703-112-40-47. EDN VPDOXT.
- 11. Назаров Д.М., Кондратенко И.С., Сулимин В.В., Шведов В.В. Цифровизация сельского хозяйства на примере Румынии // Международный сельскохозяйственный журнал. 2022. № 6(390). С. 622-624. DOI: 10.55186/25 876740_2022_65_6_622. EDN KEQEIC.

- 12. Отмахова Ю.С., Девяткин Д.А., Усенко Н.И. Анализ цифровых технологий в агропродовольственной сфере с использованием методов обработки больших данных // Информационное общество. 2021. № 4-5. С. 334-344. DO:1 10.52605/16059921_2021_04_334. EDN BLBWRB.
- 13. Плотникова Е.В., Артемова Е.И. Внедрение цифровых технологий в аграрных организациях // Труды Кубанского государственного аграрного университета. 2022. № 96. С. 47-52. DOI: 10.21515/1999-1703-96-47-52. EDN HBRNTG.
- 14. Челышева Д.Н. Цифровизация отечественного АПК: проблемы и пути решения // АПК: экономика, управление. 2024. № 9. С. 119-123. DOI: 10.33305/248-119. EDN PSJMOS.
- 15. Чернышева К.В., Афанасьева С.И., Королькова А.П. Цифровая трансформация агропромышленного комплекса на основе систем аналитики данных // Техника и оборудование для села. 2024. № 1(319). С. 44-48. DOI: 10.33267/2072-9642-2024-1-44-48. EDN VOMJTM.
- 16. Шевкуненко М.Ю., Нижегородов Н.В. Цифровизация аграрного сектора России в контексте формирования шестого технологического уклада // Труды Кубанского государственного аграрного университета. 2022. № 95. С. 54-60. DOI: 10.21515/1999-1703-95-54-60. EDN GNHUQX.

References

- 1. Beksultanova A.I., Sadueva M.A., Nazaeva M.I. (2021). Application of digital technologies in the agro-industrial complex of Russia. *IOP Conference Series: Earth and Environmental Science*, vol. 723, no. 3, p. 032106. DOI: 10.1088/1755-1315/723/3/032106. EDN STXIHU.
- 2. Mochalova Ya.V., Ermakova A.N., Levushkina S.V. [et al.] (2022). Application of digital technologies to increase the economic efficiency of agribusiness in Russia. Procedia Environmental Science, Engineering and Management 2022, vol. 9, no. 2, p. 601-606. EDN MIRREH.
- 3. Nehrey M., Zomchak L. (2022). Digital Technology: Emerging Issue for Agriculture. Lecture Notes on Data Engineering and Communications Technologies, vol. 135, p. 146-156. DOI: 10.1007/978-3-031-04809-8_13. EDN CPUEXT.
- 4. Subaeva A.K., Kalimullin M.N., Nizamutdinov M.M. [et al.] (2022). Analiz i tendentsii razvitiya sel'skogo khozyaistva v usloviyakh tsifrovizatsii [Analysis and trends in agricultural development in the context of digitalization]. *Vestnik Kazanskogo gosudarstvennogo agrarnogo universiteta* [Bulletin of Kazan State Agrarian University], vol. 17, no. 1(65), pp. 135-141. DOI: 10.12737/2073-0462-2022-135-141. EDN AEOBKR.
- 5. Arynichev I.V., Sidorov V.A., Arynicheva I.V. (2024). Tsifrovye resheniya v agrobiznese: formirovanie metodologii monitoringa zernovogo proizvodstva v usloviyakh tekhnologicheskikh innovatsii [Digital solutions in agribusiness: the formation of a methodology for monitoring grain production in the context of technological innovations]. Vestnik Kazanskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Kazan State Agrarian University], vol. 19, no. 1(73), pp. 86-93. DOI: 10.12737/2073-0462-2024-86-93. EDN NASORB.
- 6. Belyaeva A.S., Nikitina A.A. (2023). O problemakh i perspektivakh tsifrovoi transformatsii otechestvennogo APK [On the problems and prospects of digital transformation of the domestic agro-industrial complex]. Dostizheniya nauki i tekhniki APK [Achievements of Science and Technology of the Agro-Industrial Complex], vol. 37, no. 1, pp. 34-40. DOI: 10.53 859/02352451_2023_37_1_34. EDN EAGGHZ.
- 7. Ereshko F.I., Medennikov V.I., Kul'ba V.V. (2020). Skvoznye tekhnologii v APK na osnove tsifrovykh standartov

- [End-to-end technologies in the agro-industrial complex based on digital standards]. *Informatsionnoe obshchestvo* [Information Society], no. 3, pp. 25-33. EDN HHYYEY.
- 8. Zhukova M.A., Ulez'ko A.V. (2020). Kontseptual'nyi podkhod k formirovaniyu tsifrovoi platformy agroprodovol'stvennogo kompleksa [A conceptual approach to the formation of a digital platform of the agro-food complex]. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Voronezh State Agrarian University], vol. 13, no. 4(67), pp. 238-250. DOI: 10.17238/issn2071-2243.2020.4.238. EDN LPZZGK.
- 9. Zatsarinnyi A.A., Medennikov V.I., Raikov A.N. (2023). Integratsiya prilozhenii iskusstvennogo intellekta v edinuyu tsifrovuyu platformu APK [Integration of artificial intelligence applications into a single digital platform of the agro-industrial complex]. Informatsionnoe obshchestvo [Information Society], no. 1, pp. 127-138. DOI: 10.52605/16059921_2023_01_127. EDN NMKKLZ.
- 10. Ivshin S.V., Anisimov A.Yu. (2024). Komparativnyi analiz rossiiskoi i zarubezhnoi praktiki tsifrovizatsii predpriyatii APK [Comparative analysis of Russian and foreign practices of digitalization of agricultural enterprises]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proceedings of the Kuban State Agrarian University], no. 112, pp. 40-47. DOI: 10.21515/1999-1703-112-40-47. EDN VPDOXT.
- 11. Nazarov D.M., Kondratenko I.S., Sulimin V.V., Shvedov V.V. (2022). *Tsifrovizatsiya sel'skogo khozyaistva na primere Rumynii* [Digitalization of agriculture on the example of Romania]. *Mezhdunarodnyi selskokhozyaistvennyi zhurnal*, no. 6(390), pp. 622-624. DOI: 10.55186/25876740_2022_65_6_622. EDN KEQEIC.
- 12. Otmakhova Yu.S., Devyatkin D.A., Usenko N.I. (2021). Analiz tsifrovykh tekhnologii v agroprodovol'stvennoi sfere s ispol'zovaniem metodov obrabotki bol'shikh dannykh [Analysis of digital technologies in the agro-food sector using big data processing methods]. Informatsionnoe obshchestvo [Information Society], no. 4-5, pp. 334-344. DOI: 10.52605/16059921_2021_04_334_EDN BLBWRB.
- 13. Plotnikova E.V., Artemova E.I. (2022). *Vnedrenie tsi-frovykh tekhnologii v agrarnykh organizatsiyakh* [Implementation of digital technologies in agricultural organizations]. *Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta* [Proceedings of the Kuban State Agrarian University], no. 96, pp. 47-52. DOI: 10.21515/1999-1703-96-47-52. EDN HBRNTG.
- 14. Chelysheva D.N. (2024). *Tsifrovizatsiya otechestven-nogo APK: problemy i puti resheniya* [Digitalization of the domestic agro-industrial complex: problems and solutions]. *APK: ekonomika, upravlenie* [AIC: Economics, Management], no. 9, pp. 119-123. DOI: 10.33305/248-119. EDN PSJMOS.
- 15. Chernysheva K.V., Afanas'eva S.I., Korolkova A.P. (2024). Tsifrovaya transformatsiya agropromyshlennogo kompleksa na osnove sistem analitiki dannykh [Digital transformation of the agro-industrial complex based on data analytics systems]. Tekhnika i oborudovanie dlya sela [Machinery and Equipment for Rural Areas], no. 1(319), pp. 44-48. DOI: 10.33267/2072-9642-2024-1-44-48. EDN VOMJTM.
- 16. Shevkunenko M.Yu., Nizhegorodov N.V. (2022). *Tsi-frovizatsiya agrarnogo sektora Rossii v kontekste formirovaniya shestogo tekhnologicheskogo uklada* [Digitalization of the Russian agricultural sector in the context of the formation of the sixth technological paradigm]. *Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta* [Proceedings of the Kuban State Agrarian University], no. 95, pp. 54-60. DOI: 10.21515/1999-1703-95-54-60. EDN GNHUQX.

Информация об авторах:

Назаров Дмитрий Михайлович, доктор экономических наук, заведующий кафедрой бизнес-информатики, Уральский государственный экономический университет, ORCID: http://orcid.org/0000-0002-5847-9718, slup20005@mail.ru

Гудошникова Юлия Викторовна, кандидат экономических наук, доцент, Уральский государственный экономический университет,

ORCID: http://orcid.org/0009-0000-2385-3370, YKuvaeva1974@mail.ru

Протас Нина Геннадьевна, кандидат экономических наук, доцент, заведующий кафедрой финансового рынка и финансовых институтов, Новосибирский государственный университет экономики и управления, ORCID: http://orcid.org/0000-0002-4042-1593, n.protas1@mail.ru

Information about the authors:

Dmitry M. Nazarov, Doctor of Economic Sciences, Head of the Department of Business Informatics, Ural State Economic University, ORCID: http://orcid.org/0000-0002-5847-9718, slup20005@mail.ru

Yulia V. Gudoshnikova, candidate of economic sciences, associate professor, Ural State University of Economics,

ORCID: http://orcid.org/0009-0000-2385-3370, YKuvaeva1974@mail.ru

Nina G. Protas, candidate of economic sciences, associate professor, head the department of the financial market and financial institutions, Novosibirsk State University of Economics and Management, ORCID: http://orcid.org/0000-0002-4042-1593, n.protas1@mail.ru

✓ slup20005@mail.ru

