UDC 338.5
The presented paper examines the use of the mathematical apparatus of demand elasticity to optimize pricing policy and determine the price at which a company’s revenue reaches its maximum. The main objective of the study is to construct a theoretical and applied model that quantitatively describes consumer reactions to price changes and identifies the point at which further increases or decreases in price cease to be economically beneficial. In the theoretical section, the concept of elasticity is analyzed as the ratio of relative changes in a function and its argument. It is shown that this indicator reflects the degree of demand sensitivity to price and can be expressed as a universal coefficient linking sales dynamics with price levels. Based on this, a relationship between the demand function and the revenue function is developed, allowing for an analytical determination of the domain in which a company’s income increases and the domain in which it decreases. It is mathematically proven that the point of maximum revenue coincides with the state of unitary elasticity, where the relative change in price is exactly offset by the corresponding change in sales volume. The practical part of the research focuses on constructing a demand model using empirical data and subsequent analysis through the method of least squares. The resulting regression relationship made it possible to quantitatively determine the intervals of elastic and inelastic demand, as well as to identify the specific price range that maximizes revenue. The conducted study demonstrates that methods of mathematical analysis can be successfully applied in the field of pricing and profit management. The use of the concept of demand elasticity provides a formalized and objective approach to determining the optimal price of goods or services, enabling well-grounded managerial decisions, consideration of consumer behavior, and forecasting of the company’s economic performance.
demand elasticity, pricing policy optimization, revenue maximization, mathematical modeling, sensitivity analysis, profit management
1. Varian, H. R. (2019). Intermediate Microeconomics: A Modern Approach. W.W. Norton.
2. Krugman, P., & Wells, R. (2020). Microeconomics. Macmillan Learning.
3. Marshall, A. (1890). Principles of Economics. Macmillan and Co.
4. Pindyck, R. S., & Rubinfeld, D. L. (2018). Microeconomics. Pearson Education.
5. Nicholson, W., & Snyder, C. (2016). Microeconomic Theory: Basic Principles and Extensions. Cengage Learning.
6. Mankiw, N. G. (2021). Principles of Economics. Cengage Learning.
7. Dolgui, A., & Proth, J. M. (2010). Supply Chain Engineering: Useful Methods and Techniques. Springer. https://doi.org/10.1007/978-1-84996-017-5
8. Perloff, J. M. (2016). Microeconomics: Theory and Applications with Calculus. Pearson.
9. Gravelle, H., & Rees, R. (2004). Microeconomics. Pearson Education.
10. Talluri, K. T., & Van Ryzin, G. J. (2004). The Theory and Practice of Revenue Management. Springer. https://doi.org/10.1007/b97879
11. Phillips, R. L. (2021). Pricing and Revenue Optimization. Stanford University Press. https://doi.org/10.1515/9781503629998
12. Ito, S., & Fujimaki, R. (2016). Prescriptive Price Optimization. arXiv preprint arXiv:1605.05422.
13. Shankar, V., & Bolton, R. N. (2004). An empirical analysis of determinants of retailer pricing strategy. Marketing Science, 23(1), 28–49. https://doi.org/10.1287/mksc.1030.0030
14. Dutta, S., Bergen, M., Levy, D., Ritson, M., & Zbaracki, M. J. (2002). Pricing as a strategic capability. MIT Sloan Management Review, 43(3), 61–66.
15. Green, R., & Alston, J. M. (1990). Elasticities in Demand Analysis and Their Empirical Applications. American Journal of Agricultural Economics, 72(2), 442–449. https://doi.org/10.2307/1242321
16. The Demand Curve for Cigarettes.” The Journal of Business of the University of Chicago 6, no. 1 (1933): 15–35.
17. Ralphs Grocery Co. Monthly Price List 1926. Retrieved from https://hdl.handle.net/2027/uc1.31822031041890
18. Astaf'ev, R. U. Osnovnye podhody k formirovaniyu matematicheskih i imitacionnyh modeley na osnove baz znaniy v razrabotke programmnogo obespecheniya / R. U. Astaf'ev // Computational Nanotechnology. – 2024. – T. 11, № S5. – S. 142-151. – DOIhttps://doi.org/10.33693/2313-223X-2024-11-5-142-151. – EDN CCLNZK.
19. Astaf'ev, R. U. Podhody k analizu kachestva elektronnyh obrazovatel'nyh sred / R. U. Astaf'ev // Industrial'noe programmirovanie - 2024 : sbornik dokladov mezhdunarodnoy nauchno-prakticheskoy konferencii, Moskva, 04–05 aprelya 2024 goda. – Moskva: MIREA - Rossiyskiy tehnologicheskiy universitet, 2024. – S. 14-15. – EDN LBZNOP.
20. Sidorov, A. A. Formuly vychisleniya racional'nyh integralov dlya nekratnyh korney / A. A. Sidorov // Innovacionnye tehnologii v elektronike i priborostroenii : sbornik dokladov Rossiyskoy nauchno-tehnicheskoy konferencii s mezhdunarodnym uchastiem Fiziko-tehnologicheskogo instituta RTU MIREA, Moskva, 16–17 aprelya 2020 goda. Tom 1. – Moskva: MIREA - Rossiyskiy tehnologicheskiy universitet, 2020. – S. 294-297. – EDN HJECCV.
21. Sidorov, A. A. Formuly vychisleniya racional'nyh integralov dlya nekratnyh korney. Chast' 2 / A. A. Sidorov // Innovacionnye tehnologii v elektronike i priborostroenii : sbornik dokladov Rossiyskoy nauchno-tehnicheskoy konferencii s mezhdunarodnym uchastiem Fiziko-tehnologicheskogo instituta RTU MIREA, Moskva, 16–17 aprelya 2020 goda. Tom 1. – Moskva: MIREA - Rossiyskiy tehnologicheskiy universitet, 2020. – S. 298-301. – EDN TLYSRZ.
22. SIDOROV Andrei, 2024, THE IMPACT OF ANNOUNCEMENTS ON CRYPTOCURRENCY PRICES, Revista Economică, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol.76(4), pages 69-94, December. DOI: https://doi.org/10.56043/reveco-2024-0035
23. Chekalkin N.S., Sokolaeva N.N., Gel'miyarova V.N., Morozova T.A. Matematicheskie instrumenty dlya statisticheskogo analiza vospolneniya inzhenernyh kadrov//Moskovskiy ekonomicheskiy zhurnal. – 2025. – T. 10, № 9. – S. 254-268.
24. Sidorov, A. A. Otvetstvennost' turoperatora po dogovoru okazaniya mezhdunarodnyh turistskih uslug / A. A. Sidorov // Colloquium-Journal. – 2019. – № 19-8(43). – S. 33-34. – EDN ICPKSR.
25. Sidorov, A. A. Punktuaciya kak yazykovoe yavlenie / A. A. Sidorov // E-Scio. – 2019. – № 10(37). – S. 520-531. – EDN KFMFOD.
26. Morozova T.A., Gel'miyarova V.N., Pul'kin I.S., Evseeva O.A., Chernyshev I.D. Statisticheskiy analiz sostava i struktury vneshney torgovli Rossiyskoy Federacii//Morozova T.A., Gel'miyarova V.N., Pul'kin I.S., Evseeva O.A., Chernyshev I.D. Moskovskiy ekonomicheskiy zhurnal. –2025.– T. 10, № 2.– S. 193-212.
27. Otdel'nye aspekty primeneniya universal'noy trigonometricheskoy podstanovki / O. R. Paraskevopulo, V. N. Gel'miyarova, O. Yu. Kozlova, A. A. Sidorov // Perspektivnye materialy i tehnologii (PMT-2025) : Sbornik dokladov Nacional'noy nauchno-tehnicheskoy konferencii s mezhdunarodnym uchastiem, Moskva, 07–12 aprelya 2025 goda. – Moskva: MIREA - Rossiyskiy tehnologicheskiy universitet, 2025. – S. 1368-1374. – EDN EGAQQB.



