UDC 631.42
UDC 631.471
The study explores the possibility of creating detailed maps of soil cover structure and sustainable intra-field heterogeneity using the principles of calculating coefficients of the multitemporal soil line for precision agriculture systems. The research employs various methods, including neural network filtering of remote sensing data, constructing open soil surface maps based on the spectral vicinity of the soil line, field soil surveys, biological yield measurements, and laboratory agrochemical analysis of soil samples. The study area comprises fields located in northern Kazakhstan, characterized by moderately dry steppe conditions and minimal relief variations. The primary soil types in this region are southern and ordinary chernozems, which exhibit different fertility potentials and soil formation conditions. The results demonstrate that the open soil surface map, derived from multitemporal remote sensing data, effectively highlights soil heterogeneity. Southern chernozems showed lower biological yield due to the presence of dense carbonate horizons, while ordinary chernozems exhibited higher fertility and yield potential. The study also revealed a strong linear relationship (R² = 0.95) between spectral reflectance and organic carbon content, enabling accurate mapping of humus content and soil types. The practical application of these maps in precision agriculture resulted in an economic benefit of approximately 1100 rubles per hectare.
open soil surface, precision planting, soil cover structure, neural-network satellite data filtering
1. Fridland V.M. Structure of the soil mantle // Geoderma. 1974. Vol. 12, № 1-2. P. 35-41.
2. Rukhovich D.I. et al. Mapping of Agate-like Soil Cover Structures Based on a Multitemporal Soil Line Using Neural Network Filtering of Remote Sensing Data // Geosciences (Basel). 2025. Vol. 15, № 1. P. 32.
3. Haneklaus S, Lilienthal H, Schnug E. 25 years Precision Agriculture in Germany – a retrospective // 13th International Conference on Precision Agriculture. St. Louis, Missouri, USA, 2016.
4. Mulla D., Khosla R. Historical Evolution and Recent Advances in Precision Farming. 2015. P. 1-36.
5. Kulyanica A.L. i dr. Analiz informativnosti metodov obrabotki bol'shih sputnikovyh dannyh sistem tochnogo zemledeliya pri korrekcii krupnomasshtabnyh pochvennyh kart // Pochvovedenie. 2020. № 12. S. 1460-1477.
6. Belik A.V. Vnutripol'noe var'irovanie plodorodiya lesostepnyh chernozemov CChO i urozhaynost' sel'skohozyaystvennyh kul'tur: avtoreferat Diss. na soisk. uch. st. kand. biol. nauk. Voronezh, 2008.
7. Belousov A.A., Belousova E.N. Vliyanie vnutripolevoy neodnorodnosti pochvennogo plodorodiya na vybor elementov metodiki polevogo opyta // Vestnik KrasGAU . 2013., № 81. S. 55-62.
8. Yakusheva O.I. Vliyanie vnutripol'noy pochvennoy neodnorodnosti i urovnya intensifikacii agrotehnologiy na urozhaynost' yarovoy pshenicy: Diss. na soisk. uch. st. kand. s.-h. nauk. SPb, 2013.
9. Yang C., Anderson G.L. Determining within-field management zones for grain sorghum using aerial videography // 26th International Symposium on Remote Sensing of Environment. Vancouver, BC, 1996. P. 606-611.
10. Ziliani M.G. et al. Intra-field crop yield variability by assimilating CubeSat LAI in the APSIM crop model // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022. Vol. XLIII-B3-2022. P. 1045-1052.
11. Iwahashi Y. et al. Quantification of Changes in Rice Production for 2003-2019 with MODIS LAI Data in Pursat Province, Cambodia // Remote Sens (Basel). 2021. Vol. 13, № 10. P. 1971.
12. Qi G. et al. Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach // Remote Sens (Basel). 2021. Vol. 13, № 16. P. 3100.
13. Romano E. et al. Methodology for the Definition of Durum Wheat Yield Homogeneous Zones by Using Satellite Spectral Indices // Remote Sens (Basel). 2021. Vol. 13, № 11. P. 2036.
14. Zhang Y. et al. Assimilation of Wheat and Soil States into the APSIM-Wheat Crop Model: A Case Study // Remote Sens (Basel). 2021. Vol. 14, № 1. P. 65.
15. Rukhovich D.I. et al. Recognition of the Bare Soil Using Deep Machine Learning Methods to Create Maps of Arable Soil Degradation Based on the Analysis of Multi-Temporal Remote Sensing Data // Remote Sens (Basel). 2022. Vol. 14, № 9. P. 2224.
16. Koroleva P.V. i dr. Mestopolozhenie otkrytoy poverhnosti pochvy i linii pochvy v spektral'nom prostranstve RED-NIR // Pochvovedenie. 2017. № 12. P. 1435–1446.
17. Gallo B.C. et al. Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology // Remote Sens (Basel). 2018. Vol. 10, № 10. P. 1571.



