Effectiveness of using symbiotic bacteria (Xenorhabdus spp.) entomapathogenic nematodes against potato disease agents (Phytophthora infestans and Rhizoctonia solani)
Abstract and keywords
Abstract (English):
The potential of using Xenorhabdus spp. bacteria, symbionts of entomopathogenic nematodes (EPN) of the Steinernematidae family, against potato pathogens was studied. A comparative evaluation revealed the strains of symbiotic bacteria with the highest antibiotic activity against the tested potato phytopathogens, Phytophthora infestans and Rhizoctonia solani. Xenorhabdus bovienii strains 5SPG and SRP18-91, symbionts of the nematode species Steinernema feltiae, demonstrated the highest activity against P. infestans: 41% and 40%, respectively. Overall, evaluation of the effect of symbiotic bacterial strains of the genus Xenorhabdus on the mycelial growth of both pathogens demonstrated that they inhibited the mycelial growth of R. solani by 8% more effectively than the mycelial growth of P. infestans. In vitro experiments showed the best inhibition of the R. solani growth zone on days 3 and 5 of counting in Xenorhabdus nematophila strain «Pskov-1», a symbiont of the nematode Seinernema carpocapsae strain «agriotos». The highest antibiotic activity against P. infestans was demonstrated by X. bovienii strains (SRP18-91, No. 42, Pskov 15 and VII-pogost), symbionts of the nematode species S. feltia. As a result of laboratory evaluation of the effectiveness of various strains of symbiotic bacteria against potato pathogens, promising strains of symbiotic bacteria were identified. Work on studying the possibilities of effective use of these strains should be continued in the field.

Keywords:
natural populations, symbiotic bacteria, entomopathogenic nematodes, pathogens of potato diseases, antibiotic activity, biological efficiency
Text
Text (PDF): Read Download
References

1. Zaharenko V.A. Biotehnologii i zaschita rasteniy // Zaschita i karantin rasteniy. 2015. № 11. S. 3-6.

2. Pavlyushin V.A., Novikova I.I., Boykova I.V. Mikrobiologicheskaya zaschita rasteniy v tehnologiyah fitosanitarnoy optimizacii agroekosistem: teoriya i praktika (obzor) // Sel'skohozyaystvennaya biologiya. 2020. T. 55. №. 3. S. 421-438. DOI:https://doi.org/10.15389/agrobiology.2020.3.421rus

3. Ayaz M., Li C.H., Ali Q. et al. Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives. Molecules. 2023. vol. 28. no. 18. Pp. 6735. DOI:https://doi.org/10.3390/molecules28186735

4. Tomar P., ThakurN., Yadav A. N. Endosymbiotic microbes from entomopathogenic nematode (EPNs) and their applications as biocontrol agents for agro-environmental sustainability // Egyptian Journal of Biological Pest Control. 2022. Vol. 32. Pp. 80. DOIhttps://doi.org/10.1186/s41938-022-00579-7

5. Poinar G.O. Jr. Nematodes for Biological Control of Insects, Boca Raton, Florida: C.R.C. Press; 1979. 289 p. DOI:https://doi.org/10.1201/9781351074957

6. Morgan J.A.W., Kuntzelmann V., Tavernor S.M. et al. Survival of Xenorhabdus nematophilus and Photorhabdus luminescens in water and soil. J Appl. Microbiol. 1997. Vol. 83. Pp. 665-70.

7. Dreyer J., Malan A.P., Dicks L.M.T. Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds. Front. Microbiol. 2018. Vol. 9. Pp. 3177. DOI:https://doi.org/10.3389/fmicb.2018.03177

8. Akhurst R.J. Antibiotic activity of Xenorhabdusspp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol. 1982. Vol. 128. no. 12. Pp. 3061-3065. DOI:https://doi.org/10.1099/00221287-128-12-3061

9. Hayrullin R.M., Sorokan' A.V., Gabdrahmanova V.F. i dr. Perspektivnye svoystva Bacillus thuringiensis i napravleniya ih ispol'zovaniya dlya zaschity rasteniy // Prikladnaya biohimiya i mikrobiologiya. 2023. T. 59. № 4. S. 337-354. DOI:https://doi.org/10.31857/S0555109923040074

10. Lacey L.A., Grzywacz D., Shapiro-Ilan D.I. et al. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology. 2015. Vol. 132. Pp.1-41. DOI:https://doi.org/10.1016/j.jip.2015.07.009

11. Elanskiy S.N., Kokaeva L.Yu., Stacyuk N.V. i dr. Struktura i dinamika populyaciy Phytophthora infestans – vozbuditelya fitoftoroza kartofelya i tomata // Zaschita kartofelya. 2017. № 3. S. 3-44. http://www.kartofel.org/zakart/3_2017.pdf.

12. Belov D.A., Hyutti A.V. Sovremennye fitopatogennye kompleksy bolezney kartofelya i mery po predotvrascheniyu ih rasprostraneniya v Rossii // Kartofel' i ovoschi. 2022. № 5. S. 18-24.

13. Chebotar' V.K., Zaplatkin A.N., Balakina S.V. i dr. Urozhaynost' i porazhaemost' kartofelya rizoktoniozom i fitoftorozom pod vliyaniem endofitnyh bakteriy Bacillus thuringiensisW65 i Bacillus amyloliquefaciens R20 // Sel'skohozyaystvennaya biologiya. 2023. T. 58. № 3. S. 429-446. http://agrobiology.ru/articles/3-2023chebotar-rus.pdf.

14. Pil'schikova N.S., Gannibal F.B. Sovremennaya sistematika gribov roda Rhizoctoniasensulato // Mikologiya i fitopatologiya. 2016. T. 50. № 2. S. 75-88. DOI:https://doi.org/10.31857/S0026364821060052

15. Lelyak A.A., Shpatova T.V., Shternshis M.V. Fungicidnye svoystva entomopatogennogo griba Metarhizium anisopliae // Zaschita i karantin rasteniy. 2014. № 4. C. 21-23.

Login or Create
* Forgot password?