Potential of soil protection and resource-saving (carbon-saving) agriculture in the Middle Volga region
Abstract and keywords
Abstract (English):
Modern agriculture, based on the intensification of land use, contributes to the massive loss of soil carbon. Disturbance of the structure of cultivated areas, intensive tillage, excessive application of fertilizers, primarily nitrogen fertilizers, and the development of erosion processes are the main causes of soil carbon loss. The calculation of the humus balance in the current structure of acreage showed that it develops with a deficit of 0.804 t/ha, which, with an average weighted carbon content of 58% in humus, is estimated at 0.466 t/ha of carbon or 1.7 carbon units. Based on 1.3 million hectares of cultivated land, carbon losses amount to 605 thousand tons annually or more than 2.5 million carbon units. Only the development and implementation of new approaches to agriculture will ensure the sustainability of production and the preservation of soil fertility. The purpose of the presented studies is to substantiate the feasibility of soil-protective and resource-saving agriculture in the Middle Volga region (using the example of the Ulyanovsk region) and to assess the sequestration potential of soils. Our research has established a high potential for carbon accumulation in the soils of the Ulyanovsk region. To increase carbon sequestration in specific soil and climatic conditions, it is important to choose scientifically sound methods of soil protection and resource-saving (carbon-saving) agriculture, the main elements of which are: direct sowing, abandonment of pure vapors, cultivation of PPK (cover crops), widespread use of leguminous crops as a source of biological nitrogen, microbiological drugs (instead of pesticides and fertilizers), etc. The development of direct seeding technology will ensure the accumulation of at least 0.1 tons per hectare/year, which, according to our calculations, will amount to at least 133 thousand tons in the region.

Keywords:
soil-protective (carbon-saving) and resource-saving agriculture, carbon sequestration, direct seeding, soil-based crops, legumes
Text
Text (PDF): Read Download
References

1. Holmatov V. (2021). Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints . Renewable and sustainable energy reviews, vol. 149, R.111417. DOI:https://doi.org/10.1016/j.rser.2021.111417

2. Bitva za klimat: karbonovoe zemledelie kak stavka Rossii: ekspertnyy doklad / pod red. A.Yu. Ivanova N.D. Durmanova (ruk-li avt. kol.), M. P. Orlov, K. V. Piksendeev, Yu. E. Rovnov i dr.. Nacional'nyy issledovatel'skiy universitet «Vysshaya shkola ekonomiki». M.: Izdatel'skiy dom Vysshey shkoly ekonomiki, 2021. 120 s.

3. Sharkov I.G. Nekotorye aspekty uglerod-sekvestriruyuschey sposobnosti pahotnyh pochv / I. G. Sharkov, P. V. Antipina // Pochvy i okruzhayuschaya sreda. 2022. Tom 5. № 2. S. 175. DOI:https://doi.org/10.31251/pos.v5i2.175

4. Mineralizuemost' organicheskogo veschestva i uglerod-sekvestriruyuschaya emkost' pochv zonal'nogo ryada / V. M. Semenov, L. A. Ivannikova, T. V. Kuznecova [i dr.] // Pochvovedenie. 2008. № 7. S. 819-832.

5. Intergovernmental panel on Cimate Change (2020). Land and Climate Change. P. 36.

6. Paustian K, Lehmann J, Ogle S, Reay D, Robertson G P, Smith P (2016). Climate-Smart Soils. Nature, 532, p 49-57. DOI:https://doi.org/10.1038/nature17174

7. Stolbovoy V.S. Regenerativnoe sel'skoe hozyaystvo i smyagchenie posledstviy izmeneniya klimata // Dostizheniya nauki i tehniki APK. 2020. T. 34. № 7. S. 19-26. DOI:https://doi.org/10.1038/nature17174

8. Lal R. Soil carbon sequestration impacts on global climate change and food security // Science. 2004. Vol. 304. pp. 1623-162.

9. Ogle S., Breidt J., Del Grosso S.J., Gurung R., Spencer S., Williams S., Manning, D. (2023). Counterfactual scenarios reveal historical impact of cropland management on soil organic carbon stocks in the United States. Scientific Reports. 13. Article e14564. DOI:https://doi.org/10.1038/s41598-023-41307-x

10. Francaviglia R., Di Bene C., Farina R., Salvati L., Vicente-Vicente J. L. (2019). Assessing “4 per 1000” Soil Organic Carbon Storage Rates under Mediterranean Climate: A Comprehensive Data Analysis. Mitig. Adapt. Strateg. Glob. Chang, 24, rr 795-818.

11. Sevooboroty dlya tehnologii pryamogo poseva v usloviyah lesostepnoy zony srednego Povolzh'ya / A. L. Toygil'din, O. L. Kibalyuk, I. A. Toygil'dina, D. E. Ayupov. Ul'yanovsk: Ul'yanovskiy gosudarstvennyy agrarnyy universitet im. P.A. Stolypina, 2023. 192 s.

12. Territorial'nyy organ Federal'noy sluzhby gosudarstvennoy statistiki po Ul'yanovskoy oblasti. http://73.rosstat.gov.ru/folder/40369.

13. Gherardi L.A., Sala O.E. (2020). Global Patterns and Climatic Controls of Belowground Net Carbon Fixation. Proc. Natl. Acad. Sci. USA, 117, 20038-20043.

14. Nauchno-prakticheskoe obosnovanie biologizacii zemledeliya lesostepnoy zony Povolzh'ya / A. L. Toygil'din, V. I. Morozov, M. I. Podsevalov [i dr.]. Ul'yanovsk: Ul'yanovskiy gosudarstvennyy agrarnyy universitet im. P.A. Stolypina, 2020. 386 s.

15. Shelake R.M., Waghunde R.R., Verma P.P., Singh C., Kim J.Y. (2019). Carbon Sequestration for Soil Fertility Management: Microbiological Perspective. In: Panpatte, D., Jhala, Y. (eds) Soil Fertility Management for Sustainable Development. Springer, Singapore. DOI:https://doi.org/10.1007/978-981-13-5904-0_3

16. Diabankana R. Zh. K. Ocenka primeneniya biopreparatov kak elementa uglerodnogo (organicheskogo) zemledeliya / R. Zh. K. Diabankana, A. A. Abramova, R. I. Safin // Biologicheskaya zaschita rasteniy s ispol'zovaniem genomnyh tehnologiy: Sbornik nauchnyh trudov po materialam I Vserossiyskoy nauchno-prakticheskoy konferencii, Kazan', 26-27 oktyabrya 2022 goda. – Kazan': Kazanskiy gosudarstvennyy agrarnyy universitet, 2022. S. 156-163.

17. Baumgarten A., Geithner K., Haslmayr H.-P., Zechmeister-Boltenstern S. (2014). Die Auswirkungen des Klimawandels auf die Pedosphäre. In Österreichisch-Imperialer Klimawandelbericht (AAR14) Verlag der Österreichischen Akademie der Wissenschaften Wien, Österreich, ISBN 978-3-7001-7723-4. [Google Scholar].

18. Bolinder M.A., Crotty F., Elsen A., Frac M., Kismányoky T., Lipiec J., Tits M., Tóth Z., Kätterer T. (2020). The Effect of Crop Residues, Cover Crops, Manures and Nitrogen Fertilization on Soil Organic Carbon Changes in Agroecosystems: A Synthesis of Reviews. Mitig. Adapt. Strateg. Glob. Chang DOI:https://doi.org/10.1007/s11027-020-09916-3

19. Ostle N., Whiteley A.S., Bailey M.J., Sleep D., Ineson P., Manefield M. (2003). Active Microbial RNA Turnover in a Grassland Soil Estimated Using a 13CO2 Spike. Soil Biol. Biochem, 35, rr. 877-885. DOI:https://doi.org/10.3389/fmicb.2015.00268

20. Kadyrov S.V. Puti povysheniya intensivnosti fotosinteza i produktivnosti sel'skohozyaystvennyh kul'tur s ispol'zovaniem Carbon-tehnologiy: prakticheskie rekomendacii / S. V. Kadyrov, V. N. Obrazcov, D. F. Abushaev. Voronezh: FGBOU VO Voronezhskiy gosudarstvennyy agrarnyy universitet imeni Imperatora Petra I, 2023. 69 s.

21. Ivanov A. L. Obespechenie tehnologii pryamogo poseva otechestvennymi tehnicheskimi sredstvami / Ivanov A. L., Dridiger V. K. // Dostizheniya nauki i tehniki APK. 2023. T. 37. № 3. S. 50-56.

Login or Create
* Forgot password?