Russian Federation
Russian Federation
Russian Federation
UDC 332.62
The article presents a methodology for assessing the dynamics of land use in Kontum Province (Republic of Vietnam) using satellite data and the Google Earth Engine platform. The study is based on data from Sentinel-2 multispectral satellite imagery, official 2018 provincial land use maps, and land resource statistics. The main stages of work include data collection, pre-processing, model training based on a random forest algorithm, selection of optimal parameters for classification, validation of results and construction of a map of total land use. The developed methodology allows for a detailed analysis of land-use changes with high accuracy of 83.5%. In the course of the work, key factors affecting the use of land resources were identified, which provides valuable data for territorial planning. The generated map of common land use provides a reliable tool for regional environmental oversight bodies as well as scientific and public organizations involved in sustainable development. The map allows you to identify environmental threats, assess the consequences of anthropogenic activities and offer solutions for sustainable land management. The technique is especially useful for the analysis of complex areas with a variety of natural conditions, which makes it universal. The high efficiency of the Google Earth Engine platform, which allows you to process large amounts of data in a short period of time, is also noted. This significantly reduces the cost of analysis and makes it possible to widely apply the proposed methodology in different regions. The results obtained emphasize the importance of integrating modern technologies into the processes of natural resource management.
Kon Tum Province, Vietnam, land use, Google Earth Engine, multispectral images, Sentinel-2, classification, random forest, environmental monitoring, land use maps, remote sensing, environmental management
1. Fam Ch., Murasheva A.A. Dinamika zemel'nogo fonda provincii Vin'fuk V'etnama // Journal of Agriculture and Environment. 2023. T. 35. № 7.
2. Adepoju K.A., Adelabu S.A. Improving accuracy of Landsat-8 OLI classification using image composite and multisource data with Google Earth Engine // Remote Sensing Letters. 2020. T. 11. № 2, S. 107-116. DOIhttps://doi.org/10.1080/2150704X.2020.1715406
3. Shehovcov R.V., Avakyan O.S. (2017). Rol' infrastruktury v social'no-ekonomicheskom razvitii regiona // Finansovye issledovaniya. 2017. T. 2 (55). S. 168-173.
4. Zyong, Fung Thay, Fan Hoang Lin', Fam Kam N'ung. Ocenka landshafta kak opredelyayuschiy kriteriy pri vybore territoriy vyraschivaniya mnogoletnih kul'tur v dvuh rayonah provincii Kontum (V'etnam) na granice s Laosom // Trudy Karadagskoy nauchnoy stancii im. T.I. Vyazemskogo-prirodnogo zapovednika RAN 4 (24) (2022): 60-71.
5. Shamil' K.F., Nadzhafova S.I., Ismailov N.M. Aktual'nost' sistemnyh issledovaniy ekologii Azerbaydzhana dlya ustoychivogo razvitiya organicheskogo zemledeliya // Byulleten' nauki i praktiki. 2023. T. 9, № 4, S. 84-101.
6. Nguyen H.T.T., Doan T.M., Tomppo E., McRoberts R.E. Land use/land cover mapping using multitemporal Sentinel-2 imagery and four classification methods – A case study from Dak Nong, Vietnam // Remote Sensing. 2020. T. 12. № 9. S. 1367. DOIhttps://doi.org/10.3390/rs12091367
7. Pavlychev A.V., Starodubov M.I., Galimov A.D. Ispol'zovanie algoritma mashinnogo obucheniya Random Forest dlya vyyavleniya slozhnyh komp'yuternyh incidentov // Voprosy kiberbezopasnosti. 2022. № 5. S. 51-58.
8. Huang S., Tang L., Hupy J.P., Wang Y., Shao G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing // Journal of Forestry Research. 2021. T. 32. № 1, S. 1-6. DOIhttps://doi.org/10.1007/s11676-020-01102-7
9. Raiyani K., Gonçalves T., Rato L., Salgueiro P., Marques da Silva J.R. Sentinel-2 image scene classification: A comparison between Sen2Cor and a machine learning approach // Remote Sensing. 2021. T. 13. № 2. 300. DOIhttps://doi.org/10.3390/rs13020300
10. Cheng B., Schwing A., Kirillov A. Per-pixel classification is not all you need for semantic segmentation // Advances in Neural Information Processing Systems. 2021. T. 34. S. 17864-17875.
11. Ministerstvo prirodnyh resursov i okruzhayuschey sredy provincii Kontum (2018). Karta zemlepol'zovaniya provincii Kontum v 2018 godu. Kontum: Ministerstvo prirodnyh resursov i okruzhayuschey sredy.
12. Upravlenie statistiki provincii Kontum (2023). Statisticheskiy ezhegodnik provincii Kontum. Kontum: Upravlenie statistiki.



