FORECAST OF YIELD IN GRAIN UNITS USING A GEOGRAPHIC INFORMATION SYSTEM TO ASSESS THE EFFECTIVENESS OF LAND RECLAMATION PROJECTS
Abstract and keywords
Abstract (English):
This the method of calculating crop productivity in equivalent values is considered in the article. This is necessary to compare the yield of crops of different groups with each other. Also, such an assessment is used in the analysis of the profitability of investment projects and the effectiveness of economic activity. Geographic information system tools are used to visualize calculations. The results of the authors' study for the period 2024 and 2025 are presented. NDVI georeferenced raster-grids are analyzed. It is noted that in practice, to optimize calculations and processing attribute information, direct analysis of rasters and extraction of statistics are performed. The accuracy of the forecast is also determined by the accuracy of estimating the likely yield level of the original model. The relevance of the study is justified by the fact that to assess the effectiveness of land reclamation activities, an equivalent assessment of yield is currently used as an indicator of the effectiveness of the planned activities by the recipients of the subsidy. The results of this study can also be used by to further improve the industry information system.

Keywords:
yield, geo-information system, modeling, reclamation
Text
Text (PDF): Read Download
References

1. Savin I.Yu., Bartalev S.A., Lupyan E.A., Tolpin V.A., Hvostikov S.A. Prognozirovanie urozhaynosti sel'skohozyaystvennyh kul'tur na osnove sputnikovyh dannyh: vozmozhnosti i perspektivy // Sovrem. problemy distanc. zondirovaniya Zemli iz kosmosa. 2010. T. 7. № 3. S. 275-285.

2. Zver'kov M.S., Smelova S.S. Nauchno-analiticheskiy obzor metodov prognozirovaniya urozhaynosti sel'skohozyaystvennyh kul'tur // Ekologiya i stroitel'stvo. 2023. № 2. C. 4–14. doi:https://doi.org/10.35688/2413-8452-2023-02-001.

3. Evchuk M.V., Batyrov V.A., Orosov S.A. Effektivnost' vozdelyvaniya sorgovyh kul'tur v usloviyah central'noy zony Respubliki Kalmykiya // Ekologiya i stroitel'stvo. 2025. No 1. C. 28–34. DOI:https://doi.org/10.35688/2413-8452-2025-01-004.

4. Tatarincev L.M., Tatarincev V.L. Opredelenie optimal'nyh gidrotermicheskih usloviy proizrastaniya pshenicy myagkoy yarovoy v zasushlivoy stepi Altayskogo kraya // Ekologiya i stroitel'stvo. 2025. No 3. C. 12–22. DOI:https://doi.org/10.35688/2413-8452-2025-03-002.

5. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI / Shahriar Pervez, M., Budde, M. & Rowland, J. // Remote Sensing of Environment. 2014. Vol. 149. P. 155–165.

6. Ocenka ploschadi i ob'ema poligona tverdyh bytovyh othodov s ispol'zovaniem dannyh distancionnogo zondirovaniya Zemli / D. I. Maklashin, M. R. Vagizov, R. M. Bobrovskaya // Ekologiya i stroitel'stvo. 2025. № 2. S. 39-47. DOI:https://doi.org/10.35688/2413-8452-2025-02-005. EDN FNMMIE.

7. Hassan M. et al. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform // Plant Science (journal). 2019, Vol. 282, P. 95–103.

8. Bede L., Milics G. et al. Yield Prediction Using NDVI Values from GreenSeeker and MicaSense Cameras at Different Stages of Winter Wheat Phenology // Drones. 2024, Vol. 8, P. 88. DOI:https://doi.org/10.3390/drones8030088.

9. Feng, D., Yang, H., Gao, K., Jin, X., Li, Z., Nie, C., … Li, S. (2025). Time-series NDVI and greenness spectral indices in mid-to-late growth stages enhance maize yield estimation. Field Crops Research, 333. DOI:https://doi.org/10.1016/j.fcr.2025.110069

10. Zheng B. et al. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle // Field Crops Research (Elsevier B.V.). 2017, Vol. 210, P. 71–80.

11. Dahal S. et al. Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions // Remote Sensing (journal). 2020, Vol. 12, 824.

12. Zhang J. et al. Machine learning techniques and interpretability for maize yield estimation using Time-Series images of MODIS and Multi-Source data // Computers and Electronics in Agriculture. 2024. Vol. 222. DOI:https://doi.org/10.1016/j.compag.2024.109063.

13. Mirhoseini Nejad S. M. et al. A Deep Neural Network for Crop Yield Prediction Using Earth Observations and Remotely Sensed Data // Journal of Se. T. in Applied Earth Obs. and Rem. Se. 2024. Vol. 17, P. 17489–17502. DOI:https://doi.org/10.1109/JSTARS.2024.3464411.

14. Lavalle C. et al. Economic evaluation of agricultural land to assess land use changes // LUP. 2016. Vol. 56. DOI:https://doi.org/10.1016/j.landusepol.2016.04.020.

15. Zhi, Y., Li, X., Shen, T. et al. Land productivity declines in the GGW while human contributions to restoration far outweighing degradation. Sci Rep 15, 34948 (2025). DOI:https://doi.org/10.1038/s41598-025-18963-2.

Login or Create
* Forgot password?