Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
UDC 91
UDC 528.9
UDC 341.229
The article reveals the issues of application of land use structure mapping techniques using algorithms of automated interpretation of Earth remote sensing data (multispectral space images) for the purposes of regional geoecological zoning. Research conducted in 2024. Landsat satellite images were used as Earth remote sensing data. Scientific research was conducted using neural network methods based on test sites on the territory of the Republic of Mordovia, which have different land use regimes. The test sites have different land use regimes. The experiments were conducted in the ScanEx Image Processor software package. The most effective topology of the direct distribution neural network (input channels, number of neurons in the hidden layer) was determined. Error matrix calculations were performed on control plots to assess the accuracy of interpretation. Neural networks with the proposed topologies showed high decoding accuracy. Land Cover land use class mapping was performed for a test site with an intensive land use pattern. The average proportion of pixels not assigned to classes was 94.8 %. The overall classification accuracy with pixels not assigned to classes was 0.4 %. Mapping of natural geosystems was carried out for the territory of the polygon with a nature conservation regime and weak economic development. The accuracy rates were 97.0% and 1.3%, respectively. The presented approaches to land use mapping and the results of other research made it possible to develop a model of geoecological zoning of the cultural landscape of the region with the identification of zones of ecological balance and an economic framework. The results can be used to compile and modify cartographic material in territorial planning documents at the regional and municipal levels.
geoecological zoning, cultural landscape, land use, multi-zone space images, interpretation, ecological framework, economic framework
1. Antropov D. V. Osobennosti informacionnogo obespecheniya v kontekste formirovaniya regional'noy avtomatizirovannoy sistemy planirovaniya i prognozirovaniya zemlepol'zovaniya // Mezhdunarodnyy sel'skohozyaystvennyy zhurnal. 2024. T. 67, № 3(399). S. 242-245. DOI:https://doi.org/10.55186/25876740_2024_67_3_242
2. Bolgov I. A. Analiz prostranstvennoy struktury sel'skohozyaystvennyh ugodiy yuga Saratovskogo Zavolzh'ya // Nauchno-agronomicheskiy zhurnal. 2023. № 4(123). S. 60-67. DOI:https://doi.org/10.34736/FNC.2023.123.4.009.60-67
3. Zarubin O. A. Funkcional'noe geoekologicheskoe zonirovanie metageosistem regiona (na primere Respubliki Mordoviya) // Uspehi sovremennogo estestvoznaniya. 2023. № 9. S. 28-34. DOI:https://doi.org/10.17513/use.38099
4. O. A. Zarubin, A. V. Kiryushin, A. R. Ageeva, O. V. Rychkova. Karkasnyy podhod v funkcional'nom geoekologicheskom zonirovanii metageosistem kul'turnogo landshafta regiona // Moskovskiy ekonomicheskiy zhurnal. 2023. T. 8, № 8. S. 1-23. DOI:https://doi.org/10.55186/2413046X_2023_8_8_409
5. Kolbovskiy E.Yu. Strategicheskoe prostranstvennoe planirovanie kak instrument regional'nogo razvitiya // Yaroslavskiy pedagogicheskiy vestnik. 2011. T. 3, № 3. S. 110-115.
6. A.A. Yamashkin, T.B. Silaeva, L.D. Al'ba [i dr.]. Mordovskiy nacional'nyy park «Smol'nyy». Saransk, 2000. 88 s.
7. T. V. Chernen'kova, I. P. Kotlov, N. G. Belyaeva [i dr.] Ocenka i kartografirovanie cenoticheskogo raznoobraziya lesov Moskovskogo regiona // Lesovedenie. 2022. № 6. S. 617-630. DOI:https://doi.org/10.31857/S0024114822060043
8. Rodoman B. B. Nekotorye puti sohraneniya biosfery pri urbanizacii // Vestnik Moskovskogo universiteta. Ser. Geografiya. 1971. № 3. S. 92-94.
9. Yamashkin A. A. Metodika funkcional'nogo geoekologicheskogo zonirovaniya metageosistem dlya celey ustoychivogo ekologo-social'no-ekonomicheskogo razvitiya regiona (na primere Respubliki Mordoviya) // International Agricultural Journal. 2022. T. 65, № 3. S. 1100–1119. DOI:https://doi.org/10.55186/25876740_2022_6_3_9
10. Yamashkin A.A., Yamashkin S.A. Ispol'zovanie neyronnyh setey pryamogo rasprostraneniya dlya landshaftnogo kartografirovaniya na baze kosmicheskih snimkov // Geodeziya i kartografiya. 2014. № 11. S. 52–58.
11. Bossard M. CORINE Land cover technical guide. Copenhagen, 2000. 105 p.
12. Liccari, M. Sigura, E. Tordoni [et al.]. Determining Plant Diversity within Interconnected Natural Habitat Remnants (Ecological Network) in an Agricultural Landscape: A Matter of Sampling Design? // Diversity. 2022. V. 14 (1), Issue 12. http://doi.org/10.3390/d14010012
13. Jalkanen J. Identification of ecological networks for land-use planning with spatial conservation prioritization // Landscape Ecology. 2020. V. 35. P. 353-371. DOI:https://doi.org/10.1007/s10980-019-00950-4
14. Landsat 8 (L8) : data users handbook. Sioux Falls : Earth Resources Observation and Science (EROS) Center, 2019. 106 p.
15. Scanex Image Processor v.4.2: rukovodstvo pol'zovatelya. Moskva, 2015. 354 s.



