Highly virulent and specific biopesticides based on genetically modified entomopathogenic fungi
Abstract and keywords
Abstract:
The use of entomopathogenic fungi represents a promising avenue in biological pest control against insect pests. This method offers significant advantages, including the ease of cultivating these fungi and their safety to non-target organisms, apart from insects. Nevertheless, a notable drawback of this approach is the relatively low virulence of entomopathogenic fungi towards insect hosts. This challenge can be addressed through genetic modification of the fungal strains. This review provides up-to-date insights into the development of novel biopesticides based on genetically modified strains and their potential applications in agriculture. The main methods of transformation of entomopathogenic fungi are polyethylene glycol-mediated transformation of protoplasts, transformation using agrobacteria, electroporation of germinated conidia and chemical transformation of blastospores. Incorporation of sequences encoding various effector molecules into the genomes of these organisms is a key strategy, allowing these fungi to negatively impact their infected insect hosts. Recent advancements have led to the creation of strains that secrete double-stranded RNA (dsRNA), targeting essential insect proteins, thus enhancing their virulence. Importantly, the enhancement of virulence in these strains is specific to particular pest insect species. Effective delivery of entomopathogenic fungi to target pests is crucial for the successful application of such biopesticides. Common methods include plant or soil drenching, foliar spraying, root or seed soaking, and the use of insect vectors. Soil drenching, for instance, selectively targets soil-dwelling insects, providing protection against environmental factors. For blood-feeding insects like ticks and mosquitoes, livestock and residential area spraying can be employed. This comprehensive overview sheds light on the genetic strategies for augmenting the insecticidal potential of entomopathogenic fungi and underscores the significance of effective delivery mechanisms for their successful utilization in integrated pest management strategies.

Keywords:
biopesticides, entomopathogenic fungi, genetic modification, Metarrhizium, Beauveria, Lecanicillium
Text
Text (PDF): Read Download
References

1. Oerke E.C. & Dehne H.W, (2004). Safeguarding production – losses in major crops and the role of crop protection. Crop Protection, vol. 23, no 4, pp. 275–285

2. Lovett B. & St Leger R.J. (2018) Genetically engineering better fungal biopesticides. Pest Manag Sci. vol. 4, no 4, pp. 781–789. doihttps://doi.org/10.1002/ps.4734

3. Timofeev S.A., V.S. Zhuravlev V.S., Dolgih V.V. Transformaciya entomopatogennyh gribov: metodicheskiy obzor // Vestnik zaschity rasteniy. 2019. № 100 S. 7-14.

4. Fang W., Zhang Y., Yang X., Zheng X., Duan H., Li Y. & Pei Y. (2004). Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol. vol. 85, no 1, pp. 18–24. doi:https://doi.org/10.1016/j.jip.2003.12.003

5. Kuwano T., Shirataki C. & Itoh Y. (2008) Comparison between polyethylene glycol- and polyethylenimine-mediated transformation of Aspergillus nidulans. Curr Genet. vol. 54, no 2, pp. 95–103.

6. Jin K., Zhang Y., Luo Z., Xiao Y., Fan Y., Wu D. & Pei Y. (2008). An improved method for Beauveria bassiana transformation using phosphinothricin acetyltransferase and green fluorescent protein fusion gene as a selectable and visible marker. Biotechnol Lett. vol. 30, no 8, pp. 1379–1383. doi:https://doi.org/10.1007/s10529-008-9713-6

7. Davari A., Skinner M. & Parker V. (2018). Cell electrofusion to improve efficacy and thermotolerance of the entomopathogenic fungus, Beauveria bassiana. Journal of Applied Microbiology. vol. 125, no 5, pp. 1482–1493. doi:https://doi.org/10.1111/jam.14031

8. Ying S.H. & Feng M.G. (2006) Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana. Lett Appl Microbiol. vol. 43, pp. 331–335. doihttps://doi.org/10.1111/j.1472-765X.2006.01947.x

9. St Leger R.J., Joshi L., Bidochka M.J. & Roberts D.W. (1996). Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA. vol. 93, pp. 6349–6354. doi:https://doi.org/10.1073/pnas.93.13.6349

10. Lu D., Pava-Ripoll M., Li Z. & Wang C. (2008). Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cuticle degrading protease. Appl Microbiol Biotechnol. vol. 81, no 3, pp. 515–522. doi:https://doi.org/10.1007/s00253-008-1695-8

11. Ming X., Yan J.Z., Xiao M.Z., Jin J.Z., De Liang P. & Gang W. 2015. Expression of a scorpion toxin gene BmKit enhances the virulence of Lecanicillium lecanii against aphids. J Pest Sci. vol. 88, pp. 637–644.

12. Zeng S., Lin Z., Yu X., Zhang J. & Zou Z. (2023) Expressing Parasitoid Venom Protein VRF1 in an Entomopathogen Beauveria bassiana Enhances Virulence toward Cotton Bollworm Helicoverpa armigera. Appl Environ Microbiol. vol. 89, no 6, pp. e0070523. doi:https://doi.org/10.1128/aem.00705-23

13. Yu H., Meng J., Xu J., Liu T. & Wang D. (2015). A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow. PLoS ONE. vol. 10, no 8, pp. e0135279. doi:https://doi.org/10.1371/journal.pone.0135279

14. González-Mas N., Sánchez-Ortiz A., Valverde-García P. & Quesada-Moraga E. (2019). Effects of Endophytic Entomopathogenic Ascomycetes on the Life-History Traits of Aphis gossypii Glover and Its Interactions with Melon Plants. Insects. vol. 10, no 6, pp. 165. doi:https://doi.org/10.3390/insects10060165

15. Ramos Aguila L.C., Sánchez Moreano J.P., Akutse K.S., Bamisile B.S., Liu J., Haider F.U., Ashraf H.J. & Wang L. (2023). Comprehensive genome-wide identification and expression profiling of ADF gene family in Citrus sinensis, induced by endophytic colonization of Beauveria bassiana. Int J Biol Macromol. vol. 225, pp. 886–898. doi:https://doi.org/10.1016/j.ijbiomac.2022.11.153

16. Wilcken C.F., Dal Pogetto M.H.F.D.A., Lima A.C.V., Soliman E.P., Fernandes B.V., da Silva I.M., Zanuncio A.J.V., Barbosa L.R. & Zanuncio J.C. (2019) Chemical vs entomopathogenic control of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) via aerial application in eucalyptus plantations. Sci Rep. vol. 9, no 1, pp. 416. doi:https://doi.org/10.1038/s41598-019-45802-y

17. Barra-Bucarei L., France Iglesias A., Gerding González M., Silva Aguayo G., Carrasco-Fernández J., Castro J.F. & Ortiz Campos J. (2019). Antifungal Activity of Beauveria bassiana Endophyte against Botrytis cinerea in Two Solanaceae Crops. Microorganisms. vol. 8, no 1, pp. 65. doi:https://doi.org/10.3390/microorganisms8010065.

18. Lin G., Guertin C., Di Paolo S.A., Todorova S. & Brodeur J. (2019). Phytoseiid predatory mites can disperse entomopathogenic fungi to prey patches. Sci Rep. vol. 9, no 1, pp. 19435. doi:https://doi.org/10.1038/s41598-019-55499-8

19. Rodriguez-Vivas R.I., Jonsson N.N. & Bhushan C. (2018). Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research, vol. 117, pp. 3–29. doi.org/10.1007/s00436-017-5677-6

20. Mnyone L.L., Kirby M.J., Lwetoijera D.W., Mpingwa M.W., Simfukwe E.T., Knols B.G., Takken W. & Russell T.L. (2010). Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence. Malar J. vol. 9, pp. 246. doi:https://doi.org/10.1186/1475-2875-9-246

Login or Create
* Forgot password?