Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
UDC 631.171
The relevance of the study is due to the need to improve productivity enhancement technologies within the framework of programmed harvesting in precision farming using specialized hardware and software systems based on artificial intelligence algorithms that allow for a stable increase in yield, taking into account strict compliance with environmental standards and restrictions, preservation of agricultural landscapes and soil fertility. In the course of the work, the authors proposed an algorithm for managing the production processes of phytoagrocenosis cultivation, adapted to the conditions of precision agriculture in the Volgograd region, taking into account the characteristics of the agricultural landscape, the composition of the soil cover of the site, climatic factors, etc., which is necessary for an accurate and adequate description of models of agricultural objects in the development of hybrid automated systems within the framework of programmed cultivation of agricultural crops. A control model of the pilot site in closed agroecosystems has been implemented, including three levels: lower (sensors, executive bodies), middle (PLC/MC), upper (human-machine interface). The communication between the middle and upper levels is represented by the Modbus RTU protocol implemented via Bluetooth radio communication. A hybrid automated control system (GASU) for a heterogeneous agricultural object is proposed, where the control of some parameters (temperature, humidity, irrigation, etc.) can be implemented by non-adaptive and adaptive methods, and the condition of plants, prevention and determination of diseases – using artificial intelligence and machine learning algorithms, including neural networks. The results obtained in the course of the study can be used to improve domestic technologies to ensure the sustainability of agricultural production and reduce the level of import dependence in the framework of a comprehensive solution to the problems of socio-economic development of regions.
phytoagrocenoses, production process, precision agriculture, hybrid automated systems, artificial intelligence algorithms
1. Kornev S.M., Basumatorova E.A. Mehanizaciya i avtomatizaciya processov v rastenievodstve // Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2022. № 1 (93). S. 131-134.
2. Staroverov B.A., Olonichev V.V., Smirnov M.A. Cifrovoy adaptivnyy regulyator dlya promyshlennogo kontrollera s mnogozadachnoy POSIX-sovmestimoy operacionnoy sistemoy // Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2011. № 3. S. 37-39.
3. Mihaylenko I.M. i dr. Upravlenie agrotehnologiyami i robotizirovannye sredstva realizacii // Innovacii v sel'skom hozyaystve. 2019. № 1 (30). S. 242-258.
4. Zykov A.V., Yunin V.A., Zaharov A.M. Ispol'zovanie robototehnicheskih sredstv v APK // Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. 2019. № 3 (81). S. 8-11. doi: https://doi.org/10.23670/IRJ.2019.81.3.001
5. Hvostenko T.M., Aleksanov I.A. Vnedrenie i problematika robotehnicheskih sredstv v APK // Vestnik obrazovatel'nogo konsorciuma Srednerusskiy universitet. Seriya: Informacionnye tehnologii. 2022. № 2 (20). S. 4-9.
6. Lepeshko L.S. Obzor programmnyh produktov dlya avtomatizacii v APK // Novosti nauki v APK. 2019. № 3 (12). S. 318-324. doi:https://doi.org/10.25930/2218-855X/082.3.12.2019
7. Budnikov D.A. Razrabotka SCADA-sistemy kontrolya laboratornogo oborudovaniya i parametrov processa sushki zerna // Innovacii v sel'skom hozyaystve. 2019. № 2 (31). S. 230-237.
8. Tokarev, K. et al. (2023). Monitoring and Intelligent Management of Agrophytocenosis Productivity Based on Deep Neural Network Algorithms. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol. 569. Springer, Cham. doi:https://doi.org/10.1007/978-3-031-19958-5_65
9. Tokarev K.E., Rudenko A.Yu., Kuz'min V.A., Chernyavskiy A.N. Teoriya i cifrovye tehnologii intellektual'noy podderzhki prinyatiya resheniy dlya uvelicheniya bioproduktivnosti agroekosistem na osnove neyrosetevyh modeley // Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa. 2021. № 4 (64). S. 421- 440. doi:https://doi.org/10.32786/2071-9485-2021-04-42
10. Tokarev K.E., Lebed' N.I., Kuz'min V.A., Chernyavskiy A.N. Teoriya i tehnologii upravleniya orosheniem sel'skohozyaystvennyh kul'tur na osnove informacionnyh tehnologiy podderzhki prinyatiya resheniy i matematicheskogo modelirovaniya // Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa. 2020. № 4 (60). S. 433-448. doi:https://doi.org/10.32786/2071-9485-2020-04-41
11. Lebed' N.I., Tokarev K.E. Povyshenie produktivnosti agrofitocenozov v usloviyah tochnogo zemledeliya s ispol'zovaniem neyrosetevyh algoritmov glubokogo obucheniya: obosnovanie primeneniya i aspekty komp'yuternoy realizacii // Mezhdunarodnyy sel'skohozyaystvennyy zhurnal. 2022. № 6 (390). S. 662-664. doi:https://doi.org/10.55186/25876740_2022_65_6_662
12. Dubenok N.N., Borodychev V.V., Lytov M.N. Algoritm ucheta prostranstvennoy neodnorodnosti ishodnyh harakteristik oroshaemogo uchastka na osnove GIS-tehnologiy // Rossiyskaya sel'skohozyaystvennaya nauka. 2019. № 1. S. 66-70.
13. Berezhnoy, V.A., Ivashchuk, O.A., Maslakov, Y.N. (2020). Approaches for Automated Monitoring and Evaluation of In Vitro Plant’s Morphometric Parameters. Journal of Computational and Theoretical Nanoscience, vol. 17, no. 9-10, pp. 4725-4732. doi:https://doi.org/10.1166/jctn.2020.9368
14. Berezhnoy V.V., Ivaschuk O.A., Semenov D.S. Obzor metodov i algoritmov avtomatizirovannyh sistem fenotipirovaniya rasteniy // Sovremennye naukoemkie tehnologii. 2021. № 4. S. 111-116. doi: https://doi.org/10.17513/snt.38624
15. Ignat'ev V.V. Adaptivnye gibridnye intellektual'nye sistemy upravleniya // Izvestiya YuFU. Tehnicheskie nauki. 2010. № 12 (113). S. 89-94.
16. Tokarev K.E., Lebed' N.I. Rekurrentnaya neyronnaya set' glubokogo obucheniya so svertochnymi sloyami dlya mul'tiklassovogo raspoznavaniya posevov sel'skohozyaystvennyh kul'tur // Svidetel'stvo o registracii programmy dlya EVM RU 2023681039, 10.10.2023. Zayavka № 2023680320, 10.10.2023.



