Optimization of the distribution of limited water resources by methods of evolutionary genetic programming
Abstract and keywords
Abstract:
The purpose of this work is to improve the system of water distribution for irrigation in conditions of water scarcity on the basis of multi-criteria optimization by the method of evolutionary genetic programming. The methodological basis of the research was the information -analytical approach; optimization modeling; artificial intelligence methods (genetic algorithms of evolutionary programming). A universal multi-criteria, nonlinear optimization objective function has been developed and tested, including criteria for the effectiveness of the operational organization and water user farms. These include: the maximum area of irrigated land, the income of the water management organization and the gross volume (in monetary terms) of crop production from irrigated land. The scientific and methodological directions of the use of genetic algorithms in the optimization of the distribution of limited water resources on inter-farm irrigation systems are considered. The possibility and effectiveness of using a genetic algorithm to optimize a multi-criteria objective function is established. Choosing a solution based on the indicators of multiple imitations of competition and improvements increases the scale of a complex solution search space and, as a result, universality allows you to get results when traditional methods do not work or their implementation requires an unacceptably long time. Testing of the developed model, carried out on the data of the Gorodishchenskaya irrigation system of the Volgograd region, revealed a projected increase in the effectiveness of the management decision by 10% in comparison with the traditionally practiced approach. The result is achieved by improving the quality of planning and management of water distribution in conditions of water scarcity on the basis of information support of decisions by innovative methods of management theory: multi-criteria modeling using genetic programming based on artificial intelligence methods.

Keywords:
inter-farm irrigation system, multi-criteria optimization of water distribution, economic and mathematical modeling, artificial intelligence, evolutionary genetic programming
Text
Text (PDF): Read Download
References

1. Duhovnyy V.A., Muminov Sh.H., Mirzaev N.N. Potencial agro-promyshlennyh klasterov po vnedreniyu rynochnyh mehanizmov upravle-niya i finansirovaniya vodnogo hozyaystva Uzbekistana // Melioraciya i vodnoe hozyaystvo. 2021. № 1. S.5-12.

2. Ol'garenko I. V. Informacionnye tehnologii planirovaniya vodopol'zovaniya i operativnogo upravleniya vodoraspredeleniem na oro-sitel'nyh sistemah: special'nost' 06.01.02 «Melioraciya, rekul'tivaciya i ohrana zemel'»: dissertaciya na soiskanie uchenoy stepeni doktora teh-nicheskih nauk / Ol'garenko Igor' Vladimirovich. Novocherkassk, 2013. 448 s. EDN SVAPAZ

3. Kireycheva L. V. Modeli i informacionnye tehnologii uprav-leniya vodopol'zovaniem na meliorativnyh sistemah, obespechivayuschie blagopriyatnyy meliorativnyy rezhim / L. V. Kireycheva, I. F. Yurchenko, V. M. Yashin // Melioraciya i vodnoe hozyaystvo. 2014. № 5-6. S. 50-55. EDN SZNXEV

4. Naydenov S. V. Optimizaciya vodoraspredeleniya na orositel'-nyh sistemah pri deficite vodnyh resursov / S. V. Naydenov, Yu. E. Do-mashenko, S. M. Vasil'ev // Puti povysheniya effektivnosti oroshaemogo zemledeliya. 2018. № 1(69). S. 132-136

5. Park J., Bayraksan G. A multistage distributionally robust optimiza-tion approach to water allocation under climate uncertainty // European Jour-nal of Operational Research. 2023. T. 306. № 2. S. 849-871.

6. Raška P. et al. Exploring local land use conflicts through successive planning decisions: a dynamic approach and theory-driven typology of poten-tially conflicting planning decisions // Journal of Environmental Planning and Management. 2023. T. 66. №. 10. S. 2051-2070.

7. Uddin M. G. et al. A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches // Water Research. 2023. T. 229. S. 119422.

8. Shafa N. S. et al. Multi-objective planning for optimal exploitation of surface and groundwater resources through development of an optimized cropping pattern and artificial recharge system // Ain Shams Engineering Jour-nal. 2023. T. 14. №. 2. S. 101847.

9. Rogachev D. A. Evolyucionnye i geneticheskie algoritmy kak pri-rodopodobnye podhody k strukturno-parametricheskoy optimizacii / D. A. Rogachev, D. S. Zaharov, I. S. Rudnev // Nauchnoe obosnovanie strategii cifrovogo razvitiya APK i sel'skih territoriy : materialy Nacional'-noy nauchno-prakticheskoy konferencii, Volgograd, 09 noyabrya 2022 goda / Volgogradskiy gosudarstvennyy agrarnyy universitet. Tom I. Volgograd: Volgogradskiy gosudarstvennyy agrarnyy universitet, 2023. S. 313-318.

10. Labinskiy A. Yu. Ispol'zovanie geneticheskogo algoritma dlya mnogokriterial'noy optimizacii // Prirodnye i tehnogennye riski (fi-ziko-matematicheskie i prikladnye aspekty). 2018. № 4(28). S. 5-9.

11. Imamutdinov A. I. Analiz processa evolyucionno-geneticheskih vychisleniy s tochki zreniya harakteristik obobscheniya / A. I. Imamutdi-nov, N. V. Slepcov // Nadezhnost' i kachestvo slozhnyh sistem. 2019. № 3(27). S. 84-91. DOIhttps://doi.org/10.21685/2307-4205-2019-3-10

12. Kondrat'ev, T. N. Evolyucionnye vychisleniya: neyronnye seti i geneticheskie algoritmy // Mezhdunarodnaya konferenciya po myagkim vychis-leniyam i izmereniyam. 2019. T. 1. S. 418-421.

13. Zvezincev A.I., Kvyatkovskaya I.Yu. Primenenie modificirovan-nogo algoritma geneticheskogo programmirovaniya dlya identifikacii ma-tematicheskih modeley putem rasshireniya obuchayuschego mnozhestva iskus-stvennoy neyronnoy set'yu // Vestnik Astrahanskogo gosudarstvennogo tehnicheskogo universiteta. Seriya: Upravlenie, vychislitel'naya tehnika i informatika. 2013. № 2. S. 58-65.

14. Ivanov A. M. i dr.. Primenenie metoda Neldera - Mida dlya op-timizacii vybora konstant modeli Lihacheva - Volkova // Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mehanika. Astronomiya. 2022. T. 9, № 4. S. 693-704. DOIhttps://doi.org/10.21638/spbu01.2022.411

15. Skobcov Yu. A. Sravnenie tradicionnyh i kvantovyh genetiche-skih algoritmov // Matematicheskie metody v tehnologiyah i tehnike. 2023. № 4. S. 91-95. DOIhttps://doi.org/10.52348/2712-8873_MMTT_2023_4_91

16. Schedrin V. N., Shtan'ko A. S., Voevodin O. V. Metodicheskie uka-zaniya po planirovaniyu vodopol'zovaniya na orositel'nyh sistemah na osnovanii dannyh retrospektivnogo analiza i scenarnyh raschetov v za-visimosti ot let razlichnoy vlagoobespechennosti. Novocherkassk: Rossiy-skiy nauchno-issledovatel'skiy institut problem melioracii, 2015. 61 s. EDN XWYFHN

17. Prikaz Ministerstva sel'skogo hozyaystva RF ot 31 iyulya 2020 g. N 438 «Ob utverzhdenii Pravil ekspluatacii meliorativnyh sistem i otdel'no raspolozhennyh gidrotehnicheskih sooruzheniy».

18. Godovoy otchet po tehnicheskoy ekspluatacii za 2022 god Krasno-gvardeyskogo filiala Gosudarstvennogo byudzhetnogo uchrezhdeniya Respub-liki Krym «Krymskoe upravlenie vodnogo hozyaystva i melioracii». Razdel II Vodopol'zovanie i gidrometriya, tablica 10; Razdel VI Ispol'-zovanie oroshaemyh zemel'.

19. Godovoy tehnicheskiy otchet za 2017g. Gorodischenskogo filiala FGBU «Upravlenie «Volgogradmeliovodhoz».

20. Federal'nyy Zakon o melioracii zemel'. Prinyat Gosudarstven-noy Dumoy 8 dekabrya 1995 goda (redakciya s popravkami ot 2022 g.).

Login or Create
* Forgot password?