Standardized minNDTI index as a criterion for identifying farms using no-till
Abstract and keywords
Abstract:
The experience of selecting data for constructing a minNDTI sample to identify farms using no-till in two agroecological zones of the Stavropol Territory with different agro-climatic conditions is presented. Due to the annual increase in the areas occupied by conservation technologies (in particular no-till), the development of systems for allocation and accounting is an urgent task for science and industry. The crop residues preserved during no-till create characteristic surface properties that can be used to isolate such farms based on remote sensing data. A common approach to identify farms using no-till (PP) is the use of the NDTI spectral index and its multitemporal derivative, minNDTI. As part of the study, collections of standardized minNDTI data for each year from 2019 to 2023 were selected, characterizing no-till and traditional technology for two agroclimatic zones: an unstable humidification and an arid. The possibility of using the threshold values of the NDVI vegetation index to clear samples from data corresponding to living vegetation, the possibility of using two time ranges to build the minNDTI dataset, the possibility of using Landsat and Sentinel-2 data was analyzed. The total number of analyzed samples – 16. The optimal threshold for excluding living vegetation from the minNDTI samples is 0.3. At NDVI 0.2, significant data loss occurs. The standardized minNDTI data obtained for the arid zone of the Stavropol Territory are typical for each year of the study, which gives reason to believe that it is possible to use the presented data to identify farms using no-till for any time period. The use of the minNDTI index to identify farms using no-til is optimal for regions with agro-climatic conditions similar to the Arid zone of the Stavropol Territory.

Keywords:
no-till, conservation agriculture, remote sensing, google earth engine, arid zone
Text
Text (PDF): Read Download
References

1. Dridiger V. K. Sostoyanie provedeniya issledovaniy po minimizacii obrabotki pochvy i pryamomu posevu // Sel'skohozyaystvennyy zhurnal. 2019. T. 5. S. 8-16.

2. Hively W. D. i dr. Mapping crop residue and tillage intensity using WorldView-3 satellite shortwave infrared residue indices // Remote Sens. 2018. T. 10. № 10. S. 1657.

3. Perry C. R., Lautenschlager L. F. Functional equivalence of spectral vegetation indices // Remote Sens. Environ. 1984. T. 14. № 1-3. S. 169-182.

4. Cai W. i dr. Comparison of Different Crop Residue Indices for Estimating Crop Residue Cover Using Field Observation Data // 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). : IEEE, 2018. S. 1-4.

5. Jin X. i dr. Estimation of maize residue cover using Landsat-8 OLI image spectral information and textural features // Remote Sens. 2015. T. 7. № 11. S. 14559-14575.

6. Van Deventer A. P. i dr. Using thematic mapper data to identify contrasting soil plains and tillage practices // Photogramm. Eng. Remote Sens. 1997. T. 63. № 1. S. 87-93.

7. Zheng B. i dr. Multitemporal remote sensing of crop residue cover and tillage practices: A validation of the minNDTI strategy in the United States // J. Soil Water Conserv. 2013. T. 68. № 2. S. 120-131.

8. Dridiger V. K. Tehnologiya no-till i dopuskaemye pri ee osvoenii oshibki // Sel'skohozyaystvennyy zhurnal. 2018. T. 1. № 11. S. 14-23.

9. Suleymenov M. K. Standartizirovat' issledovaniya po nulevoy tehnologii // Agrarnyy sektor. 2015. № 2 (24). S. 90-96.

10. Schukin S. V., Trufanov A. M. Ekologizaciya sel'skogo hozyaystva (perevod tradicionnogo sel'skogo hozyaystva v organicheskoe). Moskva: Buki Vedi, 2012. 196 s.

11. Daughtry C., Huntjr E. Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover // Remote Sens. Environ. 2008. T. 112. № 4. S. 1647-1657.

12. Beeson P. C., Daughtry C. S. T., Wallander S. A. Estimates of conservation tillage practices using landsat archive // Remote Sens. 2020. T. 12. № 16. S. 1-18.

13. Zheng B. i dr. Remote sensing of crop residue and tillage practices: Present capabilities and future prospects // Soil Tillage Res. 2014. T. 138. S. 26- 34.

14. Kulincev V. V. Sistema zemledeliya novogo pokoleniya Stavropol'skogo kraya. Stavropol': AGRUS Stavropol'skogo gosudarstvennogo agrarnogo universiteta, 2013. 520 s.

15. Masek J. i dr. HLS Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30m v2.0 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center.

16. Ermolaev N. R. i dr. No-till identification by crop residues on the soil surface using the multi-temporal integral index minNDTI // AgroEkoInfo. 2021. T. 4. № 46.

17. Kruskal W. H., Wallis W. A. Use of Ranks in One-Criterion Variance Analysis // J. Am. Stat. Assoc. 1952. T. 47. № 260. S. 583.

18. Gorelick N. i dr. Google Earth Engine: Planetary-scale geospatial analysis for everyone // Remote Sens. Environ. 2017.

Login or Create
* Forgot password?