Justification and development of a hybrid algorithm for managerial decision-making under the conditions of the AIC digital transformation
Abstract and keywords
Abstract (English):
The article is devoted to the problem of improving the efficiency of managerial decision-making in the agro-industrial complex under the conditions of digital transformation. The current stage of agricultural development is characterized by the intensive implementation of digital technologies, which leads to a sharp increase in the volume and diversity of data available for analysis and forecasting. Under these circumstances, traditional management methods based on retrospective assessments and expert experience demonstrate limited effectiveness and require a fundamental revision. The article substantiates the need to move from static and linear models to adaptive, self-learning management systems that integrate analytical, cognitive, and predictive components. Particular attention is paid to the role of artificial intelligence in ensuring the stability and predictability of production business processes, as well as to maintaining the importance of the human factor in data interpretation and strategic decision-making. The purpose of the study is to develop and substantiate a hybrid algorithm for managerial decision-making that integrates the practical experience of agricultural specialists with the computational capabilities of artificial intelligence. The algorithm is based on the principles of adaptability, cognitive compatibility, and iterative learning, which makes it possible to increase the accuracy, predictability, and resilience of management processes under conditions of high uncertainty in agricultural production. The developed algorithm was tested in a model experiment using production monitoring data, which confirmed its effectiveness and applicability in the practice of digital management of agri-food systems.

Keywords:
managerial decision-making, hybrid algorithm, digitalization of the agro-industrial complex, intelligent system
Text
Text (PDF): Read Download
References

1. Stel'mashonok E.V., Stel'mashonok V.L. Cifrovaya transformaciya agropromyshlennogo kompleksa: analiz perspektiv // Siberian Journal of Life Sciences and Agriculture. 2021. № 13(2). S. 336-365.

2. Soussi, A., Zero, E., Sacile, R., Trinchero, D., Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors. 2024. No. 24(8). doi: http://doi.org/10.3390/s24082647

3. Organisation for Economic Co‑operation and Development (OECD). The digitalisation of agriculture. OECD Food, Agriculture and Fisheries Papers, No. 176, 2022. DOIhttps://doi.org/10.1787/285cc27d-en

4. Il'ina L.A., Pavlov A.A. Ierarhiya usloviy razvitiya cifrovogo sel'skogo hozyaystva // Vestnik ChelGU. 2025. № 3 (497). S. 132-144.

5. Eremchenko O.A. Utechka mozgov iz agrosektora: vliyanie kadrovogo deficita na innovacionnoe razvitie sel'skoy ekonomiki // Ekonomika nauki. 2025. № 3. S. 83-96.

6. Osovin M.N. Vnedrenie tehnologiy iskusstvennogo intellekta na predpriyatiyah agroprodovol'stvennogo kompleksa Rossii: problemy i napravleniya ih resheniya // Prodovol'stvennaya politika i bezopasnost'. 2024. № 3. S. 553-568.

7. Nikolaev O.V., Litvina N.I. Iskusstvennyy intellekt kak instrument tehnologicheskogo i kadrovogo razvitiya APK // Vestnik Akademii znaniy. 2025. № 1 (66). S. 380-383.

8. Nuthall P.L. A review of the intuition literature relative to a recent quantitative study of the determinants of farmers’ intuition // International Journal of Agricultural Management. 2019. vol. 8, no. 1.

9. Duden C., Müller B., & Schmidt P. The Role of Selected Heuristics in Farmers’ Risk Management. Agricultural Economics. 2023. vol. 54. no. 3, pp. 512-528. DOI: http://doi.org/10.1111/agec.12763

10. Simon, H. The New Science of Management Decision. Englewood Cliffs, 1977, NJ: Prentice Hall, 175 p.

11. Wu C., Barnes D. A literature review of decision-making models & approaches for partner selection in agile supply chains. Journal of Purchasing and Supply Management. 2011. vol. 17, no. 4. pp. 256-263. DOI:https://doi.org/10.1016/j.pursup.2011.09.002

12. Taherdoost H., Madanchian M. Decision Making: Models, Processes, Techniques // Cloud Computing and Data Science. 2023. №5(1). DOI:https://doi.org/10.37256/ccds.5120233284

13. Repko N.V. Selekciya ozimogo yachmenya na produktivnost' i zimostoykost'. Krasnodar: Kubanskiy gosudarstvennyy agrarnyy universitet. 2009. 146 s.

14. Arinichev I.V., Sidorov V.A., Arinicheva I.V. Biznes-processy zernovogo proizvodstva: perspektivy razvitiya intellektual'nyh sistem podderzhki prinyatiya resheniy // Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2024. T. 17, № 4(83). S. 207-220. DOI:https://doi.org/10.53914/issn2071-2243_2024_4_207–220

15. Arinicheva I. V., Volkova G. V., Yahnik Ya. V., Arinichev I. V. Komp'yuternoe zrenie dlya nablyudeniya i ucheta Pyrenophora teres ozimogo yachmenya // Izvestiya Kabardino-Balkarskogo nauchnogo centra RAN. 2024. T. 26. № 2. S. 72-79. DOI:https://doi.org/10.35330/1991-6639-2024-26-2-72-79

16. Arinicheva I. V., Arinichev I. V., Repko N.V. Avtomatizirovannaya diagnostika gribnyh bolezney yachmenya // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2023. № 106. S. 81-85. DOI:https://doi.org/10.21515/1999-1703-106-81-85

Login or Create
* Forgot password?