Russian Federation
UDC 528.87
Remote sensing plays a vital role in the rapid monitoring and forecasting of floods. Satellite data allows for the coverage of large areas, the rapid identification of flood zones, and the assessment of the scale of an event, which is especially important in hard-to-reach regions. A key advantage of remote sensing is the ability to obtain data regardless of weather conditions or time of day. For example, radar systems can image through cloud cover and at night, which is particularly useful during rapidly developing floods. Various types of satellite sensors make it possible not only to record flooded areas but also to analyze water levels in rivers and reservoirs, as well as soil moisture and vegetation conditions.
remote sensing, space imagery, flood, satellites
1. Zakon RF ot 20 avgusta 1993 g. N 5669-I "O kosmicheskoy deyatel'nosti" (s izmeneniyami i dopolneniyami) [Elektronnyy resurs] // Konsul'tant Plyus: spravochno-pravovaya sistema / Kompaniya «Konsul'tant plyus». Rezhim dostupa: https://www.consultant.ru/document/cons_doc_LAW_3219/ (data obrascheniya: 01.06.2025).
2. Zakon RF ot 31 iyulya 2020 № 248-FZ «O gosudarstvennom kontrole (nadzore) i municipal'nom kontrole v Rossiyskoy Federacii» (poslednyaya redakciya) [Elektronnyy resurs] // Konsul'tant Plyus: spravochno-pravovaya sistema / Kompaniya «Konsul'tant plyus». Rezhim dostupa: https://www.consultant.ru/document/cons_doc_LAW_358750/ (data obrascheniya: 18.04.2025).
3. Zakon RF ot 19 iyulya 1998 № 113-FZ «O gidrometeorologicheskoy sluzhbe» (s izmeneniyami i dopolneniyami) [Elektronnyy resurs] // Garant.ru informacionno-pravovoy portal / Kompaniya «Garant-servis». Rezhim dostupa: https://base.garant.ru/12112455/ (data obrascheniya: 01.06.2025).
4. Postanovlenie Pravitel'stva RF ot 24.08.2019 № 1087 «Ob utverzhdenii Polozheniya o poryadke i osobennostyah predostavleniya dannyh distancionnogo zondirovaniya Zemli iz kosmosa, poluchaemyh s kosmicheskih apparatov» [Elektronnyy resurs] // Garant.ru informacionno-pravovoy portal / Kompaniya «Garant-servis». Rezhim dostupa: https://base.garant.ru/72651442/ (data obrascheniya: 13.04.2025).
5. Saim, A. Al. Fusion-Based Approaches and Machine Learning Algorithms for Forest Monitoring: A Systematic Review / A. Al. Saim, M. H. Aly // Wild. – 2025. – Vol. 2, No. 1. – P. 7. – DOIhttps://doi.org/10.3390/wild2010007. – EDN HYETXG.
6. Monitoring pavodkov na osnove distancionnogo zondirovaniya Zemli / L. G. Pavlova, D. A. Shaymardanov, A. F. Atnabaev, D. I. Muhametov // Byulleten' nauki i praktiki. – 2024. – T. 10, № 7. – S. 82-85. – DOIhttps://doi.org/10.33619/2414-2948/104/11. – EDN QLEAWT.
7. Quantum GIS Documentation [Elektronnyy resurs]. – Rezhim dostupa: https://qgis.org/en/docs/index.html (data obrascheniya: 01.06.2025).




